Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T15:51:38.936Z Has data issue: false hasContentIssue false

9 - Climate change and conservation of waders

Published online by Cambridge University Press:  05 June 2014

Ilya M. D. Maclean
Affiliation:
University of Exeter
Brooke Maslo
Affiliation:
Rutgers University, New Jersey
Julie L. Lockwood
Affiliation:
Rutgers University, New Jersey
Get access

Summary

Introduction

The world’s climate is changing rapidly. In the last 50 years, global temperatures on land have risen by approximately 1°C, and over the next 100 years a further rise in temperatures of at least 2°C is expected (IPCC, 2007). This rise may not seem like much, but the rate of temperature change is unprecedented in recent history, and many animals and plants are struggling to keep pace (Chen et al., 2011). Wading birds (Charadrii) are particularly susceptible to climate change (Maclean & Wilson, 2011). Many species travel over large sections of the globe during the course of their annual cycle and use habitats in many different biomes and climate zones (Piersma & Lindstrom, 2004). The majority of waders breed in the high Arctic, a region warmer now than at any time in the last 125 000 years and undergoing further warming at a rate almost twice that of the global average. Other species breed in freshwater marshes, which are threatened by increased drought. During the winter periods, the majority of waders move to coastal habitats where they experience climate-related threats associated with the marine environment. Global sea level rose ~17 cm during the last century, but the rate in the last decade is nearly double that of the last century (Church & White, 2006). Significant habitat loss and change has occurred as a result, and even greater changes are expected in the future (Chu-Agor et al., 2010). The magnitude of future changes in sea level are very difficult to predict because of uncertainties associated with understanding the extent of polar ice sheet loss. However, the last time polar regions were significantly warmer than at present for an extended period, reductions in polar ice volume led to 4–6 m of sea level rise (IPCC, 2007). Marine invertebrate prey of waders are also susceptible to changes in ocean chemistry. Ocean acidity has increased by ~30% as a result of higher levels of dissolved carbon dioxide, with concomitant deleterious impacts on calcifying organisms (Orr et al., 2005). Moreover, temperature increases and changes in ocean circulation patterns have been linked with reductions in dissolved oxygen in coastal and marine systems, with extremely damaging consequences for the fauna associated with these habitats (Grantham et al., 2004). Many of these species are part of the food web on which waders rely.

Type
Chapter
Information
Coastal Conservation , pp. 265 - 286
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamik, P. & Pietruszkova, J. (2008). Advances in spring but variable autumnal trends in timing of inland wader migration. Acta Ornithologica, 43, 119–128.CrossRefGoogle Scholar
Aiello-Lammens, M. E., Chu-Agor, M. L., Convertino, M., et al. (2011). The impact of sea-level rise on snowy plovers in Florida: Integrating geomorphological, habitat, and metapopulation models. Global Change Biology, 17, 3644–3654.CrossRefGoogle Scholar
Araujo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. (2005). Validation of species-climate impact models under climate change. Global Change Biology, 11, 1504–1513.CrossRefGoogle Scholar
Atkinson, P. W., Clark, N. A., Bell, M. C., et al. (2003). Changes in commercially fished shellfish stocks and shorebird populations in the Wash, England. Biological Conservation, 114, 127–141.CrossRefGoogle Scholar
Austin, G. E. & Rehfisch, M. M. (2003). The likely impact of sea level rise on waders (Charadrii) wintering on estuaries. Journal for Nature Conservation (Jena), 11, 43–58.CrossRefGoogle Scholar
Austin, G. E. & Rehfisch, M. M. (2005). Shifting nonbreeding distributions of migratory fauna in relation to climatic change. Global Change Biology, 11, 31–38.CrossRefGoogle Scholar
Avery, M. I. & Krebs, J. R. (1984). Temperature and foraging successs of great tits Parus major hunting for spiders. Ibis, 126, 33–38.CrossRefGoogle Scholar
Baron, J. S., Poff, N. L., Angermeier, P. L., et al. (2002). Meeting ecological and societal needs for freshwater. Ecological Applications, 12, 1247–1260.CrossRefGoogle Scholar
Beale, C. M., Dodd, S. & Pearce-Higgins, J. W. (2006). Wader recruitment indices suggest nesting success is temperature-dependent in Dunlin Calidris alpina. Ibis, 148, 405–410.CrossRefGoogle Scholar
Beale, C. M., Lennon, J. J. & Gimona, A. (2008). Opening the climate envelope reveals no macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences of the United States of America, 105, 14908–14912.CrossRefGoogle ScholarPubMed
Beaumont, L. J., Pitman, A. J., Poulsen, M. & Hughes, L. (2007). Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Global Change Biology, 13, 1368–1385.CrossRefGoogle Scholar
Berry, P. M., Vanhinsberg, D., Viles, H. A., et al. (2001). Impacts on terrestrial environments. In Harrison, P. A., Berry, P. M. & Dawson, T. P. (eds.), Climate Change and Nature Conservation in Britain and Ireland: Modelling Natural Resource Responses to Climate Change (The MONARCH Project). Oxford: UKCIP Technical Report.Google Scholar
Both, C. (2007). Comment on “Rapid advance of spring arrival dates in long-distance migratory birds”. Science, 315, 598.CrossRefGoogle Scholar
Both, C. & Visser, M. E. (2001). Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature, 411, 296–298.CrossRefGoogle Scholar
Both, C., Piersma, T. & Roodbergen, S. P. (2005). Climatic change explains much of the 20th century advance in laying date of northern lapwing Vanellus vanellus in The Netherlands. Ardea, 93, 79–88.Google Scholar
Boyd, H. & Petersen, A. (2006). Spring arrivals of migrant waders in Iceland in the 20th century. Ringing & Migration, 23, 107–115.CrossRefGoogle Scholar
Buse, A., Dury, S. J., Woodburn, R. J. W., Perrins, C. M. & Good, J. E. G. (1999). Effects of elevated temperature on multi-species interactions: The case of pedunculate oak, winter moth and tits. Functional Ecology, 13, 74–82.CrossRefGoogle Scholar
Chen, I. C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026.CrossRefGoogle ScholarPubMed
Chu-Agor, M. L., Munoz-Carpena, R., Kiker, G., Emanuelsson, A. & Linkov, I. (2010). Exploring vulnerability of coastal habitats to sea level rise through global sensitivity and uncertainty analyses. Environmental Modelling & Software, 26, 593–604.CrossRefGoogle Scholar
Church, J. A. & White, N. J. (2006). A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33, 4.CrossRefGoogle Scholar
Clark, J. A. (2004). Ringing recoveries confirm high mortality in severe winters. Ringing & Migration, 22, 43–50.CrossRefGoogle Scholar
Clark, J. A. (2009). Selective mortality of waders during severe weather. Bird Study, 56, 96–102.CrossRefGoogle Scholar
Crooks, S. (2004). The effect of sea-level rise on coastal geomorphology. Ibis, 146, 18–20.CrossRefGoogle Scholar
Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. (2012). Rise of the generalists: Evidence for climate driven homogenization in avian communities. Global Ecology and Biogeography, 21, 568–578.CrossRefGoogle Scholar
Davies, N. B. & Green, R. E. (1976). Development and ecological significance of feeding techniques in reed warbler (Acrocephalus scirpaceus). Animal Behaviour, 24, 213–229.CrossRefGoogle Scholar
Durell, S., Stillman, R. A., Caldow, R. W. G., et al. (2006). Modelling the effect of environmental change on shorebirds: A case study on Poole Harbour, UK. Biological Conservation, 131, 459–473.CrossRefGoogle Scholar
Eglington, S. M., Gill, J. A., Bolton, M., et al. (2008). Restoration of wet features for breeding waders on lowland grassland. Journal of Applied Ecology, 45, 305–314.CrossRefGoogle Scholar
Erwin, R. M., Cahoon, D. R., Prosser, D. J., Sanders, G. M. & Hensel, P. (2006). Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds. Estuaries and Coasts, 29, 96–106.CrossRefGoogle Scholar
Foster, M. S. (1974). Rain, feeding behavior, and clutch size in tropical birds. Auk, 91, 722–726.CrossRefGoogle Scholar
Freckleton, R. P., Watkinson, A. R., Green, R. E. & Sutherland, W. J. (2006). Census error and the detection of density dependence. Journal of Animal Ecology, 75, 837–851.CrossRefGoogle ScholarPubMed
French, P. W. (2006). Managed realignment – The developing story of a comparatively new approach to soft engineering. Estuarine, Coastal and Shelf Science, 67, 409–423.CrossRefGoogle Scholar
Fretwell, S. D. & Lucas, H. L. J. (1969). On territorial behavior and other factors influencing habitat distribution in birds, Part 1, theoretical development. Acta Biotheoretica, 19, 16–36.CrossRefGoogle Scholar
FWS, Fish and Wildlife Service (2011). Rising to the Challenge: Strategic Plan for Responding to Accelerating Climate Change. Washington, DC: US Fish and Wildlife Service.Google Scholar
Galbraith, H., Jones, R., Park, R., et al. (2002). Global climate change and sea level rise: Potential losses of intertidal habitat for shorebirds. Waterbirds, 25, 173–183.CrossRefGoogle Scholar
Gill, J. A., Sutherland, W. J. & Norris, K. (2001). Depletion models can predict shorebird distribution at different spatial scales. Proceedings of the Royal Society of London, Series B, Biological Sciences, 268, 369–376.CrossRefGoogle ScholarPubMed
Godet, L., Jaffre, M. & Devictor, V. (2011). Waders in winter: Long-term changes of migratory bird assemblages facing climate change. Biology Letters, 7, 714–717.CrossRefGoogle ScholarPubMed
Gosler, A. G., Greenwood, J. J. D. & Perrins, C. (1995). Predation risk and the cost of being fat. Nature, 377, 621–623.CrossRefGoogle Scholar
Gosscustard, J. D., Caldow, R. W. G., Clarke, R. T., Durell, S. & Sutherland, W. J. (1995). Deriving population parameters from individual variations in foraging behaviour. 1. Empirical game-theory distribution model of oystercatcher Haematopus ostralegus feeding on mussels Myilus edulis. Journal of Animal Ecology, 64, 265–276.CrossRefGoogle Scholar
Grantham, B. A., Chan, F., Nielsen, K. J., et al. (2004). Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 429, 749–754.CrossRefGoogle ScholarPubMed
Heikkinen, R. K., Luoto, M., Araujo, M. B., et al. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751–777.CrossRefGoogle Scholar
Hotker, H. & Sebebade, A. (2000). Effects of predation and weather on the breeding success of avocets Recurvirostra avosetta. Bird Study, 47, 91–101.CrossRefGoogle Scholar
Hughes, R. G. (2004). Climate change and loss of saltmarshes: Consequences for birds. Ibis, 146, 21–28.CrossRefGoogle Scholar
Huntley, B., Green, R. E., Collingham, Y. C. & Willis, S. G. (2007). A Climatic Atlas of European Breeding Birds. Barcelona: Lynx Edicions.Google Scholar
Insley, H., Peach, W., Swann, B. & Etheridge, B. (1997). Survival rates of redshank Tringa totanus wintering on the Moray Firth. Bird Study, 44, 277–289.CrossRefGoogle Scholar
IPCC. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessement Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland: IPCC.Google Scholar
Jonzén, N., Lindén, A., Ergon, T., et al. (2006). Rapid advance of spring arrival dates in long-distance migratory birds. Science, 312, 1959–1961.CrossRefGoogle ScholarPubMed
Kery, M., Madsen, J. & Lebreton, J. D. (2006). Survival of Svalbard pink-footed geese Anser brachyrhynchus in relation to winter climate, density and land-use. Journal of Animal Ecology, 75, 1172–1181.CrossRefGoogle ScholarPubMed
Kokko, H. (1999). Competition for early arrival in migratory birds. Journal of Animal Ecology, 68, 940–950.CrossRefGoogle Scholar
Maclean, I. M. D. & Austin, G. E. (2009). Waterbirds, climate change and wildlife conservation in Britain. British Wildlife, 20, 250–256.Google Scholar
Maclean, I. M. D. & Wilson, R. J. (2011). Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 108, 12337–12342.CrossRefGoogle ScholarPubMed
Maclean, I., Austin, G. & Rehfisch, M. (2005). Climate-mediated changes in the distribution and abundance of over-wintering waders in Europe. Alauda, 73, 277.Google Scholar
Maclean, I. M. D., Austin, G. E. & Rehfisch, M. M. (2006). Are responses to climate change temperature dependent? Population changes in over-wintering migratory shorebirds. Journal of Ornithology, 147, 26.Google Scholar
Maclean, I. M. D., Austin, G. E., Rehfisch, M. M., et al. (2008a). Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biology, 14, 2489–2500.Google Scholar
Maclean, I. M. D., Rehfisch, M. M., Delany, S. & Robinson, R. A. (2008b). The Effects of Climate Change on Migratory Waterbirds within the African–Eurasian Flyway. Bonn, Germany: British Trust for Ornithology.Google Scholar
Maclean, I. M. D., Boar, R. R. & Lugo, C. (2012). A review of the relative merits of conserving, using, or draining papyrus swamps. Environmental Management, 47, 218–229.CrossRefGoogle Scholar
Mafabi, P. (2000). The role of wetland policies in the conservation of waterbirds: The case of Uganda. Ostrich, 71, 96–98.CrossRefGoogle Scholar
McCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Meltofte, H., Hoye, T. T. & Schmidt, N. M. (2008) Effects of food availability, snow and predation on breeding performance of waders at Zackenberg. Advances in Ecological Research, 40, 325–343.CrossRefGoogle Scholar
Mitchell, R. J., Morecroft, M. D., Acreman, M., et al. (2007). England Biodiversity Strategy – Towards Adaptation to Climate Change. Final Report to DEFRA for Contract CR0327. London: DEFRA.Google Scholar
Musters, C. J. M., ter Keurs, W. J. & de Snoo, G. R. (2010). Timing of the breeding season of black-tailed godwit Limosa limosa and northern lapwing Vanellus vanellus in The Netherlands. Ardea, 98, 195–202.CrossRefGoogle Scholar
Nash, J. C. & Walker-Smith, M. (1987). Nonlinear Parameter Estimation. New York, NY: Dekker.Google Scholar
Newton, I. (1988) Population Limitation in Birds. London: Academic Press.Google Scholar
Niehaus, A. C. & Ydenberg, R. C. (2006). Ecological factors associated with the breeding and migratory phenology of high-latitude breeding western sandpipers. Polar Biology, 30, 11–17.CrossRefGoogle Scholar
Oksanen, L. & Oksanen, T. (1992). Long-term microtine dynamics in north Fennoscandian tundra – The vole cycle and the lemming chaos. Ecography, 15, 226–236.CrossRefGoogle Scholar
Orr, J. C., Fabry, V. J., Aumont, O., et al. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681–686.CrossRefGoogle ScholarPubMed
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics, 37, 637–669.CrossRefGoogle Scholar
Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.CrossRefGoogle ScholarPubMed
Pearce-Higgins, J. W., Yalden, D. W. & Whittingham, M. J. (2005), Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia, 143, 470–476.CrossRefGoogle Scholar
Pearson, R. G. & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?Global Ecology and Biogeography, 12, 361–371.CrossRefGoogle Scholar
Perrins, C. M. (1991). Tits and their caterpillar food-supply. Ibis, 133, 49–54.CrossRefGoogle Scholar
Pienkowski, M. W. (1983). The effects of environmental-conditions on feeding rates and prey-selection of shore plovers. Ornis Scandinavica, 14, 227–238.CrossRefGoogle Scholar
Piersma, T. & Lindstrom, A. (2004). Migrating shorebirds as integrative sentinels of global environmental change. Ibis, 146, 61–69.CrossRefGoogle Scholar
Rehfisch, M. M. & Crick, H. Q. P. (2003). Predicting the impact of climatic change on Arctic-breeding waders. Wader Study Group Bulletin, 100, 86–95.Google Scholar
Rehfisch, M. M., Austin, G. E., Freeman, S. N., Armitage, M. J. S. & Burton, N. H. K. (2004). The possible impact of climate change on the future distributions and numbers of waders on Britain’s non-estuarine coast. Ibis, 146, 70–81.CrossRefGoogle Scholar
Robinson, R. A., Learmonth, J. A., Hutson, A. M., et al. (2005). Climate Change and Migratory Species. BTO Research Report 414: A Report for DEFRA Research Contract CR0302. Thetford, Norfolk: British Ornithological Trust.Google Scholar
Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. (2007). Weather-dependent survival: Implications of climate change for passerine population processes. Ibis, 149, 357–364.CrossRefGoogle Scholar
Robinson, R. A., Crick, H. Q. P., Learmonth, J. A., et al. (2009). Travelling through a warming world: Climate change and migratory species. Endangered Species Research, 7, 87–99.CrossRefGoogle Scholar
Root, T. L., Price, J. T., Hall, K. R., et al. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.CrossRefGoogle ScholarPubMed
Rubolini, D., Saino, N. & Moller, A. P. (2011). Migratory behaviour constrains the phenological response of birds to climate change. Climate Research, 42, 45–55.CrossRefGoogle Scholar
Schekkerman, H., Tulp, I., Piersma, T., et al. (1996). Growth and energetics of knot chicks in Taymyr, Siberia. Wader Study Group Bulletin, 79, 28.Google Scholar
Schwartz, M. D., Ahas, R. & Aasa, A. (2006). Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 12, 343–351.CrossRefGoogle Scholar
Seavey, J. R., Gilmer, B. & McGarigal, K. M. (2011). Effect of sea-level rise on piping plover (Charadrius melodus) breeding habitat. Biological Conservation, 144, 393–401.CrossRefGoogle Scholar
Stillman, R. A., West, A. D., Goss-Custard, J. D., et al. (2005). Predicting site quality for shorebird communities: A case study on the Humber estuary, UK. Marine Ecology Progress Series, 305, 203–217.CrossRefGoogle Scholar
Sunday, J. M., Bates, A. E. & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2, 686–690.CrossRefGoogle Scholar
Sutherland, W. J. (2006). Predicting the ecological consequences of environmental change: A review of the methods. Journal of Applied Ecology, 43, 599–616.CrossRefGoogle Scholar
Thaxter, C. B., Sansom, A., Thewlis, R. M., et al. (2010). Wetland Bird Survey Alerts 2006/2007: Changes in Numbers of Wintering Waterbirds in the Constituent Countries of the United Kingdom, Special Protection Areas (SPAs) and Sites of Special Scientific Interest (SSSIs). Thetford, Norfolk: British Trust for Ornithology.Google Scholar
Tian, B., Zhang, L. Q., Wang, X. R., Zhou, Y. X. & Zhang, W. (2010). Forecasting the effects of sea-level rise at Chongming Dongtan Nature Reserve in the Yangtze Delta, Shanghai, China. Ecological Engineering, 36, 1383–1388.CrossRefGoogle Scholar
Underhill, L. G., Prysjones, R. P., Syroechkovski, E. E., et al. (1993). Breeding of waders (Charadrii) and Brent geese (Branta bernicla bernicla) at Pronchishcheva Lake, Northeastern Taimyr, Russia, in a peak and decreasing lemming year. Ibis, 135, 277–292.CrossRefGoogle Scholar
Van de Pol, M., Vindenes, Y., Saether, B. E., et al. (2010). Effects of climate change and variability on population dynamics in a long-lived shorebird. Ecology, 91, 1192–1204.Google Scholar
Visser, M. E. & Both, C. (2005). Shifts in phenology due to global climate change: The need for a yardstick. Proceedings of the Royal Society of London, Series B, Biological Sciences, 272, 2561–2569.CrossRefGoogle ScholarPubMed
Walther, G. R., Post, E., Convey, P., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.CrossRefGoogle ScholarPubMed
Warnock, N., Page, G. W., Ruhlen, T. D., et al. (2002). Management and conservation of San Francisco Bay salt ponds: Effects of pond salinity, area, tide, and season on Pacific flyway waterbirds. Waterbirds, 25, 79–92.Google Scholar
West, A. D. & Caldow, R. W. G. (2006). The development and use of individuals-based models to predict the effects of habitat loss and disturbance on waders and waterfowl. Ibis, 148, 158–168.CrossRefGoogle Scholar
Wiersma, P. & Piersma, T. (1994). Effects of microhabitat, flocking, climate and migratory goal on energy-expenditure in the annual cycle of red knots. Condor, 96, 257–279.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×