Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T05:45:16.835Z Has data issue: false hasContentIssue false

Establishment success of lichen diaspores in young and old boreal rainforests: a comparison between Lobaria pulmonaria and L. scrobiculata

Published online by Cambridge University Press:  05 April 2011

Olga HILMO
Affiliation:
Department of Biology, Faculty of Natural Science and Technology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway. Email: olga.hilmo@bio.ntnu.no
Lester ROCHA
Affiliation:
Norwegian Institute for Nature Research, P.O. Box 5685 Sluppen, NO-7485 Trondheim, Norway (and above).
Håkon HOLIEN
Affiliation:
Faculty of Agriculture and Information Technology, Nord-Trøndelag University College, Servicebox 2501, N-7729 Steinkjer, Norway.
Yngvar GAUSLAA
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway.

Abstract

This study compares the success of vegetative diaspore establishment of the old forest lichens Lobaria pulmonaria and L. scrobiculata sown on Picea abies branches in boreal rainforests. The larger diaspores of L. pulmonaria (green algal photobiont) established more successfully, and showed a greater flexibility in ecological amplitude, than the smaller diaspores of L. scrobiculata (cyanobacterial photobiont). The establishment success apparently depended on species-specific differences in morphological and physiological traits of the diaspores. Both species established as well in young plantations as in old forests. Lobaria scrobiculata was most successful on short branches and small trees. In contrast, L. pulmonaria responded positively to trunk circumference in the old stands. The establishment success of both species decreases with increasing canopy openness, indicating that the soredia/isidioid soredia failed to establish on the most exposed branches. The probability of establishment did not change with bark-pH or with distance from the nearest stream. Despite a successful establishment in regeneration forests, the long-term survival in managed forests is still uncertain.

Type
Research Article
Copyright
Copyright © British Lichen Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. C. (1964) Studies of the woodland light climate. I. The photographic computation of light conditions. Journal of Ecology 52: 2741.CrossRefGoogle Scholar
Asplund, J. & Gauslaa, Y. (2008) Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 155: 9399.CrossRefGoogle ScholarPubMed
Bailey, R. H. (1976) Ecological aspects of dispersal and establishment in lichens. In Lichenology: Progress and Problems (Brown, D. H., Hawksworth, D. L. & Bailey, R. H., eds): 215247. London: Academic Press.Google Scholar
Crawley, M. J. (2002) Statistical Computing. An Introduction to Data Analysis Using S-Plus. West Sussex: John Wiley & Sons Ltd.Google Scholar
Englund, S. R., O'Brien, J. J. & Clark, D. B. (2000) Evaluation of digital and film hemispherical photography and spherical densiometry fore measuring forest light environments. Canadian Journal of Forest Research 30: 19992005.CrossRefGoogle Scholar
Førland, E. J. (1993) Precipitation normals, normal period 1961–1990 [In Norwegian] Norwegian Institute of Meteorology, Report 39/93. Klima 163.Google Scholar
Forman, R. T. T. (1975) Canopy lichens with blue-green algae: a nitrogen source in a Colombian rain forest. Ecology 56: 11761184.CrossRefGoogle Scholar
Fritz-Sheridan, R. P. (1985) Impact of simulated rains on nitrogenase activity in Peltigera aphthosa and P. polydactyla. Lichenologist 17: 27–31.CrossRefGoogle Scholar
Gauslaa, Y. (2006) Trade-off between reproduction and growth in the foliose old forest lichen Lobaria pulmonaria. Basic and Applied Ecology 7: 455460.CrossRefGoogle Scholar
Gauslaa, Y. & Holien, H. (1998) Acidity of boreal Picea abies-canopy lichens and their substratum, modified by local soils and airborne acidic depositions. Flora 193: 249257.CrossRefGoogle Scholar
Gauslaa, Y., Lie, M., Solhaug, K. A. & Ohlson, M. (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147: 406416.CrossRefGoogle ScholarPubMed
Gauslaa, Y., Palmqvist, K., Solhaug, K. A., Holien, H., Hilmo, O., Nybakken, L., Myhre, L. C. & Ohlson, M. (2007) Growth of epiphytic old forest lichens at regional and successional scales. Canadian Journal of Forest Research 37: 18321845.CrossRefGoogle Scholar
Goward, T. (1994) Notes on old growth-dependent epiphytic macrolichens in inland British Colombia, Canada. Acta Botanici Fennici 150: 3138.Google Scholar
Green, T. G. A., Büdel, B., Heber, U., Meyer, A., Zellner, H & Lange, O. L. (1993) Differences in photosynthetic performance between cyanobacterial and green algal components of lichen photosymbiodemes measured in the field. New Phytologist 125: 723731.CrossRefGoogle ScholarPubMed
Harper, J. L. (1977) Population Biology of Plants. New York: Academic Press.Google Scholar
Hedenås, H. & Ericson, L. (2003) Response of epiphytic lichens on Populus tremula in a selective cutting experiment. Ecological Applications 13: 11241134.CrossRefGoogle Scholar
Hedenås, H. & Hedström, P. (2007) Conservation of epiphytic lichens: significance of remnant aspen (Populus tremula) trees in clear-cuts. Biological Conservation 135: 388395.CrossRefGoogle Scholar
Hedenås, H., Boloyukh, V. O. & Jonsson, B. G. (2003) Spatial distribution of epiphytes on Populus tremula in relation to dispersal mode. Journal of Vegetation Science 14: 233242.CrossRefGoogle Scholar
Hilmo, O. & Ott, S. (2002) Juvenile development of the cyanolichen Lobaria scrobiculata and the green-algal lichens Platismatia glauca and Platismatia norvegica in a boreal Picea abies forest. Plant Biology 4: 273280.CrossRefGoogle Scholar
Hilmo, O. & Såstad, S. (2001) Colonization of old-forest lichens in a young and an old boreal Picea abies forest: an experimental approach. Biological Conservation 102: 251259.CrossRefGoogle Scholar
Hilmo, O., Holien, H., Hytteborn, H. & Ely-Aastrup, E. (2009) Richness of epiphytic lichens in differently aged Picea abies plantations situated in the oceanic region of Central Norway. Lichenologist 41: 97108.CrossRefGoogle Scholar
Holien, H. & Prestø, T. (2008) Improved management and monitoring of biodiversity in boreal rain forest of Central Norway [In Norwegian with English summary]. Report 55: 1146 Høgskolen i Nord-Trøndelag.Google Scholar
Holien, H. & Tønsberg, T. (1996) Boreal regnskog i Norge – habitatet for Trøndelags-elementets lavarter [In Norwegian with English summary]. Blyttia 54: 157177.Google Scholar
Kermit, T. & Gauslaa, Y. (2001) The vertical gradient of bark pH of twigs and macrolichens in a Picea abies canopy not affected by acid rain. Lichenologist 33: 353359.CrossRefGoogle Scholar
Kuusinen, M. (1996) Importance of spruce swamp-forests for epiphyte diversity and flora on Picea abies in southern and middle Boreal Finland. Ecography 19: 4151.CrossRefGoogle Scholar
Kålås, J. A., Viken, Å. & Bakken, T. (2006) Norsk Rødliste 2006 – 2006 Norwegian Red List. Norway: Artdatabanken.Google Scholar
Lange, O. L., Kilian, E. & Ziegler, H. (1986) Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71: 104110.CrossRefGoogle Scholar
Lesica, P., McCune, B., Cooper, S. V. & Hong, W. S. (1991) Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Canadian Journal of Botany 69: 17451755.CrossRefGoogle Scholar
Lidén, M. & Hilmo, O. (2005) Population characteristics of the suboceanic lichen Platismatia norvegica in core and fringe habitats: relations to macroclimate, substrate, and proximity to streams. Bryologist 108: 506517.CrossRefGoogle Scholar
Löbel, S., Snäll, T. & Rydin, H. (2009) Mating system, reproduction mode and diaspore size affect metacommunity diversity. Journal of Ecology 97: 176185.CrossRefGoogle Scholar
Moen, A. (1999) National Atlas of Norway: Vegetation. Hønefoss: Norwegian Mapping Authority.Google Scholar
Moles, A. T. & Westoby, M. (2004) Seedling survival and seed size: a synthesis of the literature. Journal of Ecology 92: 372383.CrossRefGoogle Scholar
Nash, T. H. III (1996) Lichen Biology. Cambridge: Cambridge University Press.Google Scholar
Öckinger, E. & Nilsson, S. G. (2010) Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest. Ecology 91: 21002109.CrossRefGoogle ScholarPubMed
Öckinger, E., Niklasson, M. & Nilsson, S. G. (2005) Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality? Biodiversity and Conservation 14: 759773.CrossRefGoogle Scholar
Peck, J. E. & McCune, B. (1997) Remnant trees and canopy lichen communities in Western Oregon: a retrospective approach. Ecological Applications 7: 11811187.CrossRefGoogle Scholar
R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0, URL http://www.R-project.org.Google Scholar
Rolstad, J., Gjerde, I., Storaunet, K. O. & Rolstad, E. (2001) Epiphytic lichens in Norwegian coastal spruce forest: historical logging and present forest structure. Ecological Applications 11: 421436.CrossRefGoogle Scholar
Scheidegger, C. (1995) Early development of transplanted isidioid soredia of Lobaria pulmonaria in an endangered population. Lichenologist 27: 361374.CrossRefGoogle Scholar
Scheidegger, C. & Goward, T. (2002) Monitoring lichens for conservation: red lists and conservation action plans. In Monitoring with Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 163181. London: Kluwer Academic Publishers.CrossRefGoogle Scholar
Scheidegger, C. & Werth, S. (2009) Conservation strategies for lichens: insights from population biology. Fungal Biology Reviews 23: 5566.CrossRefGoogle Scholar
Sillett, S. C. & Goslin, M. N. (1999) Distribution of epiphytic macrolichens in relation to remnant trees in a multiple-age Douglas-fir forest. Canadian Journal of Forest Research 29: 12041215.CrossRefGoogle Scholar
Sillett, S. C., McCune, B., Peck, J. E., Rambo, T. R. & Ruchty, A. (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecological Applications 10: 789799.CrossRefGoogle Scholar
Snäll, T., Pennanen, J., Kivistö, L. & Hanski, I. (2005) Modelling epiphyte metapopulation dynamics in a dynamic forest landscape. Oikos 109: 209222.CrossRefGoogle Scholar
Storaunet, K. O., Rolstad, J., Gjerde, I. & Rolstad, E. (1998) Nyere skoghistorie og forekomst av utvalgte lav-arter i kystgranskog i Namdalen [In Norwegian]. Rapport fra skogforskningen, Supplement 4: 1102.Google Scholar
Storaunet, K. O., Rolstad, J. & Groven, R. (2000) Reconstructing 100–150 years logging history in coastal spruce forests (Picea abies) with special conservation values in Central Norway. Scandinavian Journal of Forest Research 15: 591604.CrossRefGoogle Scholar
Wagner, H. H., Werth, S., Kalwij, J. M., Bolli, J. C. & Scheidegger, C. (2006) Modelling forest recolonization by an epiphytic lichen using a landscape genetic approach. Landscape Ecology 21: 849865.CrossRefGoogle Scholar
Walser, J-C, Zoller, S., Büchler, U. & Scheidegger, C. (2004) Species-specific detection of Lobaria pulmonaria (lichenized ascomycete) diaspores in litter samples trapped in snow cover. Molecular Ecology 10: 21292138.CrossRefGoogle Scholar
Werth, S., Wagner, H., Gugerli, F., Holderegger, R., Csencsics, D., Kalwij, J. M. & Scheidegger, C. (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87: 20372046.CrossRefGoogle Scholar
Zoller, S., Frey, B. & Scheidegger, C. (2000) Juvenile development and diaspore survival in the threatened epiphytic lichen species Sticta fuliginosa, Leptogium saturninum and Menegazzia terebrata: conclusions for in situ conservation. Plant Biology 2: 496503.CrossRefGoogle Scholar
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. (2009) Mixed Effects Models and Extensions in Ecology with R. New York: Springer.CrossRefGoogle Scholar