Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T02:33:51.502Z Has data issue: false hasContentIssue false

Manganvesuvianite and tweddillite, two new Mn3+-silicate minerals from the Kalahari manganese fields, South Africa

Published online by Cambridge University Press:  05 July 2018

T. Armbruster*
Affiliation:
Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
E. Gnos
Affiliation:
Mineralogisch-Petrographisches Institut, Baltzerstrasse 1, CH-3012 Bern, Switzerland
R. Dixon
Affiliation:
Private Bag X620, Pretoria 0001, Republic of South Africa
J. Gutzmer
Affiliation:
Department of Geology, Rand Afrikaans University, P.O. Box 524, Auckland Park 2006, Republic of South Africa
C. Hejny
Affiliation:
Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
N. Döbelin
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität, D-44780 Bochum, Germany
O. Medenbach
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität, D-44780 Bochum, Germany

Abstract

The new minerals manganvesuviante and tweddillite, both formed by hydrothermal alteration of primary manganese ores, are described from the Kalahari manganese fields (Republic of South Africa). In addition, single-crystal X-ray structure refinements of both new minerals are presented.

Manganvesuvianite is a tetragonal vesuvianite mineral with the simplified formula Ca19Mn3+(Al,Mn3+,Fe3+)10(Mg,Mn2+)2Si18O69(OH)9, characterized by Mn3+ occupying the five-coordinated position (square pyramid). The crystals simple prismatic forms: {100}, {110} terminated by {101} and exhibit deep maroon red colour. With polarized light the crystals are strongly pleochroic, yellowish parallel to E and dark red to lilac parallel to O.

Tweddillite is an epidote-group mineral (space group P21/m, a = 8.932(5), b = 5.698(4), c = 10.310(5) Å, β = 114.56(4), V = 477.3(8) Å3) with the simplified formula CaSr(Mn3+,Fe3+)2Al[Si3O12](OH), closely related to strontiopiemontite. The difference between strontiopiemontite and tweddillite is the concentration of octahedral Mn3+. Strontiopiemontite has Mn3+ mainly on the M3 site whereas tweddillite has Mn3+ with minor Fe3+ on M3 and M1. Tweddillite forms aggregates of very thin dark red {001} blades characterized by striking pleochroism. The crystals appear dark red parallel to b and orange-yellow parallel to a. Perpendicular to (001) the blades appear magenta to red.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F.M. and Burnham, C.W. (1992) A comprehensive structure-model for vesuvianite: Symmetry variations and crystal growth. Canadian Mineralogist, 30, 118.Google Scholar
Almen, H. (1987) Kristallchemie von Piemontiten, Änderung der Klinozoisitstruktur durch Einbau von dreiwertigem Mangan. Diplomarbeit, Institut für Mineralogie und Kristallstrukturlehre, Universitat Wurzburg, Germany.Google Scholar
Armbruster, T. and Gnos, E. (2000 a) P4/n. and P4nc. long-range ordering in low-temperature vesuvianites. American Mineralogist, 85, 563569.CrossRefGoogle Scholar
Armbruster, T. and Gnos, E. (2000 b) Tetrahedral vacancies and cation ordering in low-temperature Mn-bearing vesuvianites: Indication of a hydro-garnet-like substitution. American Mineralogist, 85, 570577.CrossRefGoogle Scholar
Armbruster, T. and Gnos, E. (2000 c) ‘Rod’ polytypism in vesuvianite: crystal structure of a low-temperature P4nc vesuvianite with pronounced octahedral cation ordering. Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 109116.Google Scholar
Bonazzi, P. and Menchetti, S. (1995) Monoclinic members of the epidote group: Effects of the Al ↔ Fe3+ ↔ Fe2+ substitution and of the entry of REE3+ . Mineralogy and Petrology, 53, 133153.CrossRefGoogle Scholar
Bonazzi, P., Menchetti, S. and Palenzona, A. (1990) Strontiopiemontite, a new member of the epidote group, from Val Graveglia, Liguria, Italy. European Journal of Mineralogy, 2, 519523.CrossRefGoogle Scholar
Cairncross, B., Beukes, N. and Gutzmer, J. (1997) The Manganese Adventure; The South African Manganese Fields. Associated Ore and Metal Cooperation Limited, Marshalltown, lohannesburg 2107, Republic of South Africa, 236 pp.Google Scholar
Catti, M., Ferraris, G. and Ivaldi, G. (1989) On the crystal chemistry of strontian piemontite with some remarks on the nomenclature of the epidote group. Neues Jahrbuch für Mineralogie Monatshefte, 1989, 357366.Google Scholar
Enami, M. and Banno, Y. (2001) Partitioning of Sr between coexisting minerals of the hollandite- and piemontite-groups in quartz-rich schist from the Sanbagawa metamorphic belt, lapan. American Mineralogist, 86, 205214.CrossRefGoogle Scholar
Enraf Nonius (1983) Structure Determination Package (SDP). Enraf-Nonius, Delft, The Netherlands.Google Scholar
Ferraris, G., Ivaldi, G., Fuess, H. and Gregson, D. (1989) Manganese/iron distribution in a strontian piemontite by neutron diffraction. Zeitschrift für Kristallographie, 187, 145151.CrossRefGoogle Scholar
Fitzgerald, S., Rheingold, A.L. and Leavens, P.B. (1986) Crystal structure of a non-P4/nnc. vesuvianite from Asbestos, Quebec. American Mineralogist, 71, 14831488.Google Scholar
Giuseppetti, G. and Mazzi, F. (1983) The crystal structure of a vesuvianite with P4/n symmetry. Tschermaks Mineralogische und Petrogrographische Mitteilungen, 31, 277288.CrossRefGoogle Scholar
Groat, L.A, Hawthorne, F.C. and Ercit, T.S. (1992 a) The chemistry of vesuvianite. Canadian Mineralogist, 30, 1948.Google Scholar
Groat, L.A, Hawthorne, F.C. and Ercit, T.S. (1992 b) The role of fluorine in vesuvianite: A crystal-structure study. Canadian Mineralogist, 30, 10651075.Google Scholar
Groat, L.A, Hawthorne, F.C. and Ercit, T.S. (1994 a) Excess Y-group cations in the crystal structure of vesuvianite. Canadian Mineralogist, 32, 497504.Google Scholar
Groat, L.A., Hawthorne, F.C. and Ercit, T.S. (1994 b) The incorporation of boron into the vesuvianite structure. Canadian Mineralogist, 32, 505523.Google Scholar
Groat, L.A., Hawthorne, F.C. Ercit, T.S. and Grice, J.D. (1998) Wiluite, Ca19(Al, Mg, Fe, Ti)13(B, Al)5Si18O68(O, OH)10, anew mineral species isostructural with vesuvianite, from the Sakha Republic, Russian Federation. Canadian Mineralogist, 36, 13011304.Google Scholar
Hålenius, U. and Annersten, H. (1994) Five-coordinated trivalent manganese in vesuvianite: A spectroscopic study. Abstracts, International Mineralogical Association, 16th General Meeting, Pisa, Italy, pp. 162163.Google Scholar
Henmi, C., Kusachi, I. and Henmi, K. (1994) Vesuvianite from Kushiro Prefecture, Japan. Abstracts, International Mineralogical Association, 16th General Meeting, Pisa, Italy, p. 172.Google Scholar
Kersten, M., Langer, K., Almen, H. and Tillmanns, E. (1987) Kristallchemie von Piemontiten: Strukturverfeinerung und polarisierte Einkristallspektren. Zeitschrift für Kristallographie, 178, 120121.Google Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature, 1998. Canadian Mineralogist, 36, 913926.Google Scholar
Ohkawa, M., Yoshiasa, A. and Takeno, S. (1992) Crystal chemistry of vesuvianite: Site preferences of square-pyramidal coordinated sites. American Mineralogist, 77, 945953.Google Scholar
Ohkawa, M., Yoshiasa, A. and Takeno, S. (1994) Structural investigation of high- and low-symmetry vesuvianite. Mineralogical Journal, 17, 120.CrossRefGoogle Scholar
Olejniczak, Z. and Zabinski, W. (1996) 27Al NMR spectroscopic study of white vesuvianite from Piz Lunghin, Switzerland. Mineralogia Polonica, 27, 4144.Google Scholar
Pavese, A, Prencipe, M., Tribaudino, M. and Aagaard, St.S. (1998) X-ray and neutron single-crystal study of P4/n. vesuvianite. Canadian Mineralogist, 36, 10291037.Google Scholar
Phillips, B.L., Allen, F.M. and Kirkpatrick, R.J. (1987) High-resolution solid-state 27Al NMR spectroscopy of Mg-rich vesuvianite. American Mineralogist, 72, 11901194.Google Scholar
Platonov, A.N, Zabinski, W. and Sachanbinski, M. (1995) Optical absorption spectra of Mn3+ ions in vesuvianites from Lower Silesia, Poland. European Journal of Mineralogy, 7, 13451352.CrossRefGoogle Scholar
Sheldrick, G.M. (1997) SHELX-97, program for crystal structure determination. University of Göttingen, Germany.Google Scholar