Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-17T20:09:28.879Z Has data issue: false hasContentIssue false

Genetic population structure of Gyrodactylus thymalli (Monogenea) in a large Norwegian river system

Published online by Cambridge University Press:  14 October 2015

RUBEN ALEXANDER PETTERSEN*
Affiliation:
Department of Biosciences, Center for Ecological and Evolutionary Synthesis, University of Oslo, P. O. Box 1066 Blindern, 0316 Oslo, Norway
TOR ATLE MO
Affiliation:
Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway
HAAKON HANSEN
Affiliation:
Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway
LEIF ASBJØRN VØLLESTAD
Affiliation:
Department of Biosciences, Center for Ecological and Evolutionary Synthesis, University of Oslo, P. O. Box 1066 Blindern, 0316 Oslo, Norway
*
*Corresponding author: R. A. Pettersen, Department of Biosciences, Center for Ecological and Evolutionary Synthesis, University of Oslo, P. O. Box 1066 Blindern, 0316 Oslo, Norway. E-mail: rubenap@ibv.uio.no

Summary

The extent of geographic genetic variation is the result of several processes such as mutation, gene flow, selection and drift. Processes that structure the populations of parasite species are often directly linked to the processes that influence the host. Here, we investigate the genetic population structure of the ectoparasite Gyrodactylus thymalli Žitňan, 1960 (Monogenea) collected from grayling (Thymallus thymallus L.) throughout the river Glomma, the largest watercourse in Norway. Parts of the mitochondrial dehydrogenase subunit 5 (NADH 5) and cytochrome oxidase I (COI) genes from 309 G. thymalli were analysed to study the genetic variation and investigated the geographical distribution of parasite haplotypes. Three main clusters of haplotypes dominated the three distinct geographic parts of the river system; one cluster dominated in the western main stem of the river, one in the eastern and one in the lower part. There was a positive correlation between pairwise genetic distance and hydrographic distance. The results indicate restricted gene flow between sub-populations of G. thymalli, most likely due to barriers that limit upstream migration of infected grayling. More than 80% of the populations had private haplotypes, also indicating long-time isolation of sub-populations. According to a molecular clock calibration, much of the haplotype diversity of G. thymalli in the river Glomma has developed after the last glaciation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, B. G. and Borns, H. W. (1994). The Ice Age World. Scandinavian University Press, Oslo.Google Scholar
Anttila, P., Romakkaniemi, A., Kuusela, J. and Koski, P. (2008). Epidemiology of Gyrodactylus salaris (Monogenea) in the River Tornionjoki, a Baltic wild salmon river. Journal of Fish Diseases 31, 373382.CrossRefGoogle ScholarPubMed
Atkinson, S. D. and Bartholomew, J. L. (2010). Spatial, temporal and host factors structure the Ceratomyxa shasta (Myxozoa) population in the Klamath River basin. Infection Genetics and Evolution 10, 10191026.Google Scholar
Ballard, J. W. O. and Pichaud, N. (2014). Mitochondrial DNA: more than an evolutionary bystander. Functional Ecology 28, 218231.Google Scholar
Bandelt, H. J., Forster, P. and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.CrossRefGoogle ScholarPubMed
Berg, M. (1986). Det norske lakse- og innlandsfiskets historie: fiskeetaten 1855–1986. Universitetsforlaget, Oslo.Google Scholar
Bermingham, E., McCafferty, S. S. and Martin, A. P. (1997). Fish Biogeography and Molecular Clocks: Perspectives from the Panamanian Isthmus. Academic Press, Inc., 1250 Sixth Ave., San Diego, California 92101, USA 14 Belgrave Square, 24–28 Oval Road, London NW1 70X, England, UK.Google Scholar
Bernatchez, L. (2001). The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55, 351379.Google Scholar
Blasco-Costa, I., Waters, J. M. and Poulin, R. (2012). Swimming against the current: genetic structure, host mobility and the drift paradox in trematode parasites. Molecular Ecology 21, 207217.CrossRefGoogle ScholarPubMed
Criscione, C. D. and Blouin, M. S. (2004). Life cycles shape parasite evolution: comparative population genetics of salmon trematodes. Evolution 58, 198202.Google Scholar
Excoffier, L., Smouse, P. E. and Quattro, J. M. (1992). Analyse of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.Google Scholar
Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27, 401410.Google Scholar
Felsenstein, J. (1981). Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35, 12291242.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.Google Scholar
Fromm, B., Burow, S., Hahn, C. and Bachmann, L. (2014). MicroRNA loci support conspecificity of Gyrodactylus salaris and Gyrodactylus thymalli (Platyhelminthes: Monogenea). International Journal for Parasitology 44, 787793.CrossRefGoogle ScholarPubMed
Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L. N., Daly, J. M., Mumford, J. A. and Holmes, E. C. (2004). Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327332.Google Scholar
Gum, B., Gross, R. and Kuehn, R. (2005). Mitochondrial and nuclear DNA phylogeography of European grayling (Thymallus thymallus): evidence for secondary contact zones in central Europe. Molecular Ecology 14, 17071725.Google Scholar
Gum, B., Gross, R. and Geist, J. (2009). Conservation genetics and management implications for European grayling, Thymallus thymallus: synthesis of phylogeography and population genetics. Fisheries Management and Ecology 16, 3751.Google Scholar
Hahn, C., Fromm, B. and Bachmann, L. (2014). Comparative genomics of flatworms (Platyhelminthes) reveals shared genomic features of Ecto- and Endoparasitic Neodermata. Genome Biology and Evolution 6, 11051117.Google Scholar
Hansen, H., Bachmann, L. and Bakke, T. A. (2003). Mitochondrial DNA variation of Gyrodactylus spp. (Monogenea, Gyrodactylidae) populations infecting Atlantic salmon, grayling, and rainbow trout in Norway and Sweden. International Journal for Parasitology 33, 14711478.CrossRefGoogle ScholarPubMed
Hansen, H., Martinsen, L., Bakke, T. A. and Bachmann, L. (2006). The incongruence of nuclear and mitochondrial DNA variation supports conspecificity of the monogenean parasites Gyrodactylus salaris and G. thymalli . Parasitology 133, 639650.Google Scholar
Hansen, H., Bakke, T. A. and Bachmann, L. (2007 a). DNA taxonomy and barcoding of monogenean parasites: lessons from Gyrodactylus . Trends in Parasitology 23, 363367.Google Scholar
Hansen, H., Bakke, T. A. and Bachmann, L. (2007 b). Mitochondrial haplotype diversity of Gyrodactylus thymalli (Platyhelminthes; Monogenea): extended geographic sampling in United Kingdom, Poland, and Norway reveals further lineages. Parasitology Research 100, 13891394.CrossRefGoogle ScholarPubMed
Hebert, P. D. N., Ratnasingham, S. and deWaard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B-Biological Sciences 270, S96S99.Google ScholarPubMed
Heggenes, J., Qvenild, T., Stamford, M. D. and Taylor, E. B. (2006). Genetic structure in relation to movements in wild European grayling (Thymallus thymallus) in three Norwegian rivers. Canadian Journal of Fisheries and Aquatic Sciences 63, 13091319.Google Scholar
Hesthagen, T. and Sandlund, O. T. (2004). Fish distribution in a mountain area in south-eastern Norway: human introductions overrule natural immigration. Hydrobiologia 521, 4959.Google Scholar
Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58, 247276.Google Scholar
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature 405, 907913.Google Scholar
Huitfeldt-Kaas, (1918). Ferskvandsfiskenes utbredelse og indvandring i Norge, med et tillæg om krebsen. in Norwegian (Distribution and post-glacial colonisation of freshwater fishes in Norway, including the cray fish). Centraltrykkeriet, Kristiania (Oslo).Google Scholar
Hurvich, C. M. and Tsai, C. L. (1989). Regression and time-series model selection in small samples. Biometrika 76, 297307.Google Scholar
Huyse, T., Buchmann, K. and Littlewood, D. T. J. (2008). The mitochondrial genome of Gyrodactylus derjavinoides (Platyhelminthes : Monogenea) – A mitogenomic approach for Gyrodactylus species and strain identification. Gene 417, 2734.Google Scholar
Irwin, D. M., Kocher, T. D. and Wilson, A. C. (1991). Evolution of the cytochrom-b gene of mammals. Journal of Molecular Evolution 32, 128144.Google Scholar
Junge, C., Museth, J., Hindar, K., Kraabøl, M. and Vøllestad, L. A. (2014). Assessing the consequences of habitat fragmentation for two migratory salmonid fishes. Aquatic Conservation: Marine and Freshwater Ecosystems 24, 297311.Google Scholar
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.Google Scholar
Koskinen, M. T., Ranta, E., Piironen, J., Veselov, A., Titov, S., Haugen, T. O., Nilsson, J., Carlstein, M. and Primmer, C. R. (2000). Genetic lineages and postglacial colonization of grayling (Thymallus thymallus, Salmonidae) in Europe, as revealed by mitochondrial DNA analyses. Molecular Ecology 9, 16091624.Google Scholar
Kristiansen, H. and Døving, K. B. (1996). The migration of spawning stocks of grayling Thymallus thymallus, in Lake Mjosa, Norway. Environmental Biology of Fishes 47, 4350.Google Scholar
Kumar, S. (2005). Molecular clocks: four decades of evolution. Nature Reviews Genetics 6, 654662.CrossRefGoogle ScholarPubMed
Kuusela, J., Holopainen, R., Meinila, M., Anttila, P., Koski, P., Zietara, M. S., Veselov, A., Primmer, C. R. and Lumme, J. (2009). Clonal structure of salmon parasite Gyrodactylus salaris on a coevolutionary gradient on Fennoscandian salmon (Salmo salar). Annales Zoologici Fennici 46, 2133.CrossRefGoogle Scholar
L'Abée-Lund, J. H., Eie, J. A., Faugli, P. E., Haugland, S., Hvidsten, N. A., Jensen, A., Melvold, K., Pettersen, V., Petterson, L. E. and Saltveit, S. J. (2009). Rivers of Boreal Uplands. Elsevier, Amsterdam.Google Scholar
Lindqvist, C., Plaisance, L., Bakke, T. A. and Bachmann, L. (2007). Mitochondrial DNA variation of a natural population of Gyrodactylus thymalli (Monogenea) from the type locality River Hnilec, Slovakia. Parasitology Research 101, 14391442.CrossRefGoogle ScholarPubMed
Malmberg, G. (1993). Gyrodactylidae and Gyrodactylosis of Salmonidae . Bulletin Francais de la Peche et de la Pisciculture 328, 546.Google Scholar
Mäinila, M., Kuusela, J., Ziętara, M. and Lumme, J. (2002). Brief report – Primers for amplifying not similar to 820 bp of highly polymorphic mitochondrial COI gene of Gyrodactylus salaris . Hereditas 137, 7274.Google Scholar
Mäinila, M., Kuusela, J., Ziętara, M. S. and Lumme, J. (2004). Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea : Gyrodactylidae). International Journal for Parasitology 34, 515526.Google Scholar
Mills, L. S. (2007). Conservation of Wildlife Populations: Demography, Genetics, and Management. Blackwell, Oxford.Google Scholar
Mo, T. A., Appleby, C. and Sterud, E. (1998). Parasites of grayling (Thymallus thymallus) from the Glomma river system, south-eastern Norway. Bulletin of the Scandinavian Society for Parasitology 8, 611.Google Scholar
Muse, S. V. and Gaut, B. S. (1994). A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Molecular Biology and Evolution 11, 715724.Google Scholar
Nesbø, C. L., Fossheim, T., Vøllestad, L. A. and Jakobsen, K. S. (1999). Genetic divergence and phylogeographic relationships among European perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonization. Molecular Ecology 8, 13871404.Google Scholar
Nieberding, C. M. and Olivieri, I. (2007). Parasites: proxies for host genealogy and ecology? Trends in Ecology and Evolution 22, 156165.CrossRefGoogle ScholarPubMed
Northcote, T. G. (1995). Comparative biology and management of Arctic and European grayling (Salmonidae, Thymallus). Reviews in Fish Biology and Fisheries 5, 141194.CrossRefGoogle Scholar
Peakall, R. and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 25372539.Google Scholar
Plaisance, L., Huyse, T., Littlewood, D. T. J., Bakke, T. A. and Bachmann, L. (2007). The complete mitochondrial DNA sequence of the monogenean Gyrodactylus thymalli (Platyhelminthes : Monogenea), a parasite of grayling (Thymallus thymallus). Molecular and Biochemical Parasitology 154, 190194.Google Scholar
Polzin, T. and Daneshmand, S. V. (2003). On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters 31, 1220.Google Scholar
Pond, S. L. K. and Frost, S. D. W. (2005). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution 22, 12081222.Google Scholar
Pond, S. L. K., Frost, S. D. W. and Muse, S. V. (2005). HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676679.Google Scholar
Razo-Mendivil, U., Vazquez-Dominguez, E. and de Leon, G. P. P. (2013). Discordant genetic diversity and geographic patterns between Crassicutis cichlasomae (Digenea: Apocreadiidae) and its ciclid host, ‘Cichlasomaurophthalmus (Osteichthyes: Cichlidae), in Middle-America. Journal of Parasitology 99, 978988.CrossRefGoogle Scholar
Saitou, N. and Nei, M. (1987). The neighbor-joining method – a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science 236, 787792.Google Scholar
Sterud, E., Mo, T. A., Collins, C. M. and Cunningham, C. O. (2002 ). The use of host specificity, pathogenicity, and molecular markers to differentiate between Gyrodactylus salaris Malmberg, 1957 and G. thymalli Zitnan, 1960 (Monogenea: Gyrodactylidae). Parasitology 124, 203213.Google Scholar
Suzuki, Y. and Gojobori, T. (1999). A method for detecting positive selection at single amino acid sites. Molecular Biology and Evolution 16, 13151328.Google Scholar
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585595.Google Scholar
Tamura, K., Nei, M. and Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America 101, 1103011035.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.Google Scholar
Wright, S. (1943). Isolation by distance. Genetics 28, 114138.Google Scholar
Wu, S. G., Wang, G. T., Xi, B. W., Xiong, F., Liu, T. and Nie, P. (2009). Population genetic structure of the parasitic nematode Camallanus cotti inferred from DNA sequences of ITS1 rDNA and the mitochondrial COI gene. Veterinary Parasitology 164, 248256.CrossRefGoogle ScholarPubMed
Østbye, K., Bernatchez, L., Næsje, T. F., Himberg, K. J. M. and Hindar, K. (2005). Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Molecular Ecology 14, 43714387.Google Scholar
Østdahl, T., Skurdal, J., Kaltenborn, B. P. and Sandlund, O. T. (2002). Possibilities and constraints in the management of the Glomma and Lagen river basin in Norway. Archiv fuer Hydrobiologie Supplement 141, 471490.Google Scholar
Supplementary material: File

Pettersen supplementary material

Tables S1-S3

Download Pettersen supplementary material(File)
File 218.6 KB