Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T05:10:59.542Z Has data issue: false hasContentIssue false

Ecological and evolutionary consequences of benthic community stasis in the very deep sea (>1500 m)

Published online by Cambridge University Press:  08 April 2016

Martin A. Buzas
Affiliation:
Smithsonian Institution, NHB MRC-121, Washington, D.C. 20013-7012, U.S.A. E-mail: buzasm@si.edu
Lee-Ann C. Hayek
Affiliation:
Smithsonian Institution, NHB MRC-121, Washington, D.C. 20013-7012, U.S.A. E-mail: buzasm@si.edu
Stephen J. Culver
Affiliation:
Department of Geological Sciences, East Carolina University, Greenville, North Carolina 27858, U.S.A.
Bruce W. Hayward
Affiliation:
Geomarine Research, 49 Swainston Road, St. Johns, Auckland, New Zealand
Lisa E. Osterman
Affiliation:
U. S. Geological Survey, 600 Fourth Street South, St. Petersburg, Florida 33701, U.S.A.

Abstract

An enigma of deep-sea biodiversity research is that the abyss with its low productivity and densities appears to have a biodiversity similar to that of shallower depths. This conceptualization of similarity is based mainly on per-sample estimates (point diversity, within-habitat, or α-diversity). Here, we use a measure of between-sample within-community diversity (β1H) to examine benthic foraminiferal diversity between 333 stations within 49 communties from New Zealand, the South Atlantic, the Gulf of Mexico, the Norwegian Sea, and the Arctic. The communities are grouped into two depth categories: 200–1500 m and >1500 m. β1H diversity exhibits no evidence of regional differences. Instead, higher values at shallower depths are observed worldwide. At depths of >1500 m the average β1H is zero, indicating stasis or no biodiversity gradient. The difference in β1H-diversity explains why, despite species richness often being greater per sample at deeper depths, the total number of species is greater at shallower depths. The greater number of communities and higher rate of evolution resulting in shorter species durations at shallower depths is also consistent with higher β1H values.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bernhard, J. M. 1986. Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene. Journal of Foraminiferal Research 16:207215.Google Scholar
Bernhard, J. M. 1992. Benthic foraminiferal distribution and biomass related to pore-water oxygen content: central California continental slope and rise. Deep-Sea Research 1 39:585605.Google Scholar
Boltovskoy, E. 1987. Tertiary benthic foraminifera in bathyal deposits of the Quaternary world ocean. Journal of Foraminiferal Research 17:279285.Google Scholar
Brandt, A., Gooday, A. J., Brandao, S. N., Brix, S., Brokeland, W., Cedhagen, T., Choudhury, M., Cornelius, N., Danis, B., De Mesel, I., Diax, R. J., Gillan, D. C., Ebbe, B., Howe, J. A., Janussen, D., Kaiser, S., Linse, K., Malyutina, M., Pawlowski, J., Raupach, M., and Vanreusel, A. 2007. First insights into the biodiversity and biogeography of the southern Ocean deep-sea. Nature 447:307311.Google Scholar
Bulmer, M. G. 1974. On fitting the Poisson lognormal distribution to species abundance data. Biometrics 30:101110.Google Scholar
Buzas, M. A., and Culver, S. J. 1984. Species duration and evolution: benthic foraminifera on the Atlantic continental margin of North America. Science 225:829830.CrossRefGoogle ScholarPubMed
Buzas, M. A., 1989. Biogeographic and evolutionary patterns of continental margin benthic foraminifera. Paleobiology 15:1119.Google Scholar
Buzas, M. A., 1998. Assembly, disassembly, and balance in marine paleocommunities. Palaios 13:263275.Google Scholar
Buzas, M. A., 1999. Understanding regional species diversity through the log series distribution of occurrences. Diversity and Distributions 8:187195.Google Scholar
Buzas, M. A., 2009. Geographic origin of species: the temperate-tropical interchange. Geology 37:879881.Google Scholar
Buzas, M. A., and Gibson, T. G. 1969. Species diversity: benthonic foraminifera in Western North Atlantic. Science 163:7275.CrossRefGoogle ScholarPubMed
Buzas, M. A., and Hayek, L. C. 1996. Biodiversity resolution: an integrated approach. Biodiversity Research 3:4043.Google Scholar
Buzas, M. A., 1997. SHE analysis for biofacies identification. Journal of Foraminiferal Research 28:233239.Google Scholar
Buzas, M. A., 2005. On richness and evenness within and between communities. Paleobiology 31:199220.CrossRefGoogle Scholar
Buzas, M. A., 2011. Community structure: global evaluation and the role of within community beta-diversity. Journal of Foraminiferal Research 41:138154.CrossRefGoogle Scholar
Buzas, M. A., Koch, C. F., Culver, S. J., and Sohl, N. F. 1982. On the occurrence of species. Paleobiology 8:143150.CrossRefGoogle Scholar
Buzas, M. A., Hayek, L. C., Hayward, B. W., Grenfell, H. R., and Sabaa, A. T. 2007a. Biodiversity and community structure of deep-sea foraminifera around New Zealand. Deep-Sea Research 54:16411654.Google Scholar
Buzas, M. A., Hayek, L. C., and Culver, S. J. 2007b. Community structure of benthic foraminifera in the Gulf of Mexico. Marine Micropaleontology 65:4353.Google Scholar
Carney, R. S. 2005. Zonation of deep biota on continental margins. Oceanography and Marine Biology: An Annual Review 43:211278.Google Scholar
Corliss, B. H., and Emerson, S. 1990. Distribution of rose Bengal-stained deep-sea benthic foraminifera from the Nova Scotia continental margin and Gulf of Maine. Deep-Sea Research 37:381400.Google Scholar
Culver, S. J. 1988. New foraminiferal depth zonation of the northwestern Gulf of Mexico. Palaios 3:6985.CrossRefGoogle Scholar
Culver, S. J., and Buzas, M. A. 1998. Patterns of occurrence of benthic foraminifera in time and space. Pp. 207226inDonovan, S. K. and Paul, C. R. C., eds. The adequacy of the fossil record. Wiley, Chichester, U.K.Google Scholar
Culver, S. J., 2000. Global latitudinal species diversity gradient in deep-sea benthic foraminifera. Deep-Sea Research 47:259275.CrossRefGoogle Scholar
Denne, T. A., and Sen Gupta, B. K. 1988. Abundance variations of dominant benthic foraminifera on the northwestern Gulf of Mexico slope: relationship to bathymetry and water mass boundaries. Bulletin de l'Institut Géologie du Basin d'Aquitaine 44:3343.Google Scholar
Fisher, R. A., Corbet, A. S., and Williams, C. B. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12:4258.Google Scholar
Gibson, T. G., and Buzas, M. A. 1973. Species diversity: patterns in modern and Miocene foraminifera of the eastern margin of North America. Geological Society of America Bulletin 84:217238.Google Scholar
Glover, A. G., Smith, C. R., Paterson, G. L. J., Wilson, G. D. F., Hawkins, L., and Sheader, M. 2002. Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity. Marine Ecology Progress Series 240:157170.Google Scholar
Gooday, A. 1988. A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:7073.Google Scholar
Hayek, L. C., and Buzas, M. A. 2006. The martyrdom of St. Lucie: decimation of a meiofauna. Bulletin of Marine Science 79:341352.Google Scholar
Hayek, L. C., 2010. Surveying natural populations: quantitative tools for assessing biodiversity. Columbia University Press, New York.Google Scholar
Hayek, L. C., Buzas, M. A., and Osterman, L. E. 2007. Community structure of foraminiferal communities within temporal biozones from the western Arctic Ocean. Journal of Foraminiferal Research 37:3340.Google Scholar
Hayward, B. W., Holzmann, M., Grenfell, H. R., Pawlowski, J., and Triggs, C. M. 2004. Morphological distinction of molecular types in Ammonia—towards a taxonomic revision of the world's most commonly misidentified foraminifera. Marine Micropaleontology 50:237271.CrossRefGoogle Scholar
Hayward, B. W., Grenfell, H. R., Sabaa, A. T., Neil, H., and Buzas, M. A. 2010. Recent New Zealand deep-water benthic foraminifera—their taxonomy, ecologic distribution, biogeography and use in paleoenvironmental assessments. GNS Science Monograph 26. Lower Hutt, New Zealand.Google Scholar
Hessler, R. R., and Sanders, H. L. 1967. Faunal diversity in the deep sea. Deep-Sea Research 14:6578.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102106.Google Scholar
Jones, M. H., and Sen Gupta, B. K. 1995. Holocence benthic foraminiferal diversity and abundance variations in lower bathyal and abyssal environments, northwest Gulf of Mexico. Gulf Coast Associations of Geological Societies Transactions XLV:303311.Google Scholar
Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:24272439.Google Scholar
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G. V. 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology 22:315.Google Scholar
Lecroq, B., Gooday, A. J., and Pawlowski, J. 2009. Global genetic homogeneity in the deep sea foraminiferan Epistominella exigua (Rotaliida: Pseudoparrellidae). Zootaxa 2096:2332.Google Scholar
Loubere, P. 1994. Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera. Paleoceanography 9:723737.CrossRefGoogle Scholar
Mackensen, A., Sejrup, H. P., and Jansen, E. 1985. The distribution of living benthic foraminifera on the continental slope and rise off southwest Norway. Marine Micropaleontology 9:275306.Google Scholar
Mackensen, A., Grobe, H., Kuhn, G., and Futterer, D. K. 1990. Benthic foraminiferal assemblages from the eastern Weddell Sea between 68 and 73°S: distribution, ecology and fossilization potential. Marine Micropaleontology 16:241283.CrossRefGoogle Scholar
Mackensen, A., Futterer, D. K., Grobe, H., and Schmiedl, G. 1993. Benthic foraminiferal assemblages from the eastern South Atlantic Polar Front region between 35° and 57° S: distribution, ecology and fossilization potential. Marine Micropaleontology 22:3369.Google Scholar
May, R. M. 1975. Patterns of species abundance and diversity. Pp. 81120inCody, M. L. and Diamond, J. M., eds. Ecology and evolution of communities. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Murray, J. W. 2006. Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge.Google Scholar
Osterman, L. E., Buzas, M. A., and Hayek, L. C. 2002. SHE analysis for biozonation of benthic foraminiferal assemblages from western Arctic Ocean. Palaios 17:297303.2.0.CO;2>CrossRefGoogle Scholar
Parker, F. L. 1954. Distribution of the foraminifera in the northeastern Gulf of Mexico. Bulletin of the Museum of Comparative Zoology 111:454588.Google Scholar
Phleger, F. B. 1951. Ecology of foraminifera in the northwest Gulf of Mexico. Geological Society of America Memoir 46:187.Google Scholar
Phleger, F. B. 1960. Ecology and distribution of Recent foraminifera. Johns Hopkins University Press, Baltimore.Google Scholar
Rex, M. A., and Etter, R. J. 2010. Deep-sea biodiversity. Harvard University Press, Cambridge.Google Scholar
Rex, M. A., Stuart, C. T., Hessler, R. R., Allen, J. A., Sanders, H. L., and Wilson, G. D. G. 1993. Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636639.Google Scholar
Rex, M. A., McClain, C. R., Johnson, N. A., Etter, R. J., Allen, J. A., Bouchet, P., and Warén, A. 2005. A source-sink hypothesis for abyssal biodiversity. American Naturalist 165:163178.Google Scholar
Schmiedl, G. 1995. Late Quaternary benthic foraminiferal assemblages from the eastern South Atlantic Ocean: reconstruction of deep-water circulation and productivity changes. Polarforschung 160:1207.Google Scholar
Schopf, K. M. 1996. Coordinated stasis: biofacies revisited and the conceptual modeling of whole-fauna dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 127:157175.Google Scholar
Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 27:379423; 27:623–656.Google Scholar
Simpson, G. G. 1953. The major features of evolution. Columbia University Press, New York.Google Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman, San Francisco.Google Scholar
Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133:240256.Google Scholar
Thomas, E., and Gooday, A. J. 1996. Cenozoic deep-sea benthic foraminifers: tracers for changes in oceanic productivity. Geology 24:355358.Google Scholar
Van der Zwaan, G. J., Duijnstee, I. A. P., den Dulk, M., Ernst, S. R., Jannink, N. T., and Kouwenhoven, T. J. 1999. Benthic foraminifers: proxies or problems? A review of paleoecological concepts. Earth-Science Reviews 46:213236.Google Scholar
Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213251.Google Scholar
Wilson, B., and Costelloe, A. 2011. Abundance biozone boundary types and characteristics determined using beta diversity: an example using Pleistocene benthonic foraminifera in DSDP Hole 148, eastern Caribbean Sea. Palaios 26:152159.Google Scholar
Wilson, B., Jones, B., and Birjue, K. 2010. Paleoenvironmental interpretations based on foraminiferal abundance biozones, Mayo Limestone, Trinidad, West Indies, including alpha and beta diversities. Palaios 25:158166.Google Scholar
Yasuhara, M., Hunt, G., Cronin, T. M., and Okahashi, H. 2009. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences USA 106:21,71721,720.Google Scholar