Hostname: page-component-6b989bf9dc-pkhfk Total loading time: 0 Render date: 2024-04-14T19:09:50.062Z Has data issue: false hasContentIssue false

Depth-habitat reorganization of planktonic foraminifera across the Albian/Cenomanian boundary

Published online by Cambridge University Press:  08 April 2016

Atsushi Ando
Affiliation:
Department of Paleobiology, MRC NHB 121, Smithsonian National Museum of Natural History, Washington, D.C. 20013-7912 Department of Earth Sciences, Faculty of Science, Chiba University, Chiba 263-8522, Japan Research Institute for Humanity and Nature, Kyoto 603-8047, Japan BK21 Coastal Environmental System School, Division of Earth Environmental System, Pusan National University, Busan 609-735, Korea. E-mail: ando@pusan.ac.kr
Brian T. Huber
Affiliation:
Department of Paleobiology, MRC NHB 121, Smithsonian National Museum of Natural History, Washington, D.C. 20013-7912
Kenneth G. MacLeod
Affiliation:
Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211-1380

Abstract

New mid-Cretaceous stable isotope (δ18O and δ13C) records of multiple planktonic foraminiferal species and coexisting coccoliths from Blake Nose (western North Atlantic) document a major depth-ecology reorganization of planktonic foraminifera. Across the Albian/Cenomanian boundary, deep-dwelling Praeglobotruncana stephani and Rotalipora globotruncanoides adapted to living at a shallower depth, while, at the same time, the population of surface-dwelling Paracostellagerina libyca declined. Subsequently, the opportunistic species Hedbergella delrioensis shifted to a deep environment, and the deep-dwelling forms Rotalipora montsalvensis and Rotalipora reicheli first appeared. The primary paleoenvironmental cause of the observed changes in planktonic adaptive strategies is uncertain, yet their coincidence with an earliest Cenomanian cooling trend reported elsewhere implicates the importance of reduced upper-ocean stratification. Although there has been an implicit assumption that the species-specific depth habitats of fossil planktonic foraminifera were invariant through time, planktonic paleoecology is a potential variable. Accordingly, the possibility of evolutionary changes in planktonic foraminiferal depth ecology should be a primary consideration (along with other environmental parameters) in paleoceanographic interpretations of foraminiferal stable isotope data.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ando, A., and Huber, B. T. 2007. Taxonomic revision of the late Cenomanian planktonic foraminifera Rotalipora greenhornensis (Morrow, 1934). Journal of Foraminiferal Research 37:160174.CrossRefGoogle Scholar
Ando, A., and Kakegawa, T. 2007. Carbon isotope records of terrestrial organic matter and occurrence of planktonic foraminifera from the Albian Stage of Hokkaido, Japan: ocean-atmosphere δ13C trends and chronostratigraphic implications. Palaios 22:417432.CrossRefGoogle Scholar
Ando, A., Kawahata, H., and Kakegawa, T. 2006. Sr/Ca ratios as indicators of varying modes of pelagic carbonate diagenesis in the ooze, chalk and limestone realms. Sedimentary Geology 191:3753.CrossRefGoogle Scholar
Ando, A., Kaiho, K., Kawahata, H., and Kakegawa, T. 2008. Timing and magnitude of early Aptian extreme warming: unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 260:463476.CrossRefGoogle Scholar
Ando, A., Huber, B. T., MacLeod, K. G., Ohta, T., and Khim, B.-K. 2009. Blake Nose stable isotopic evidence against the mid-Cenomanian glaciation hypothesis. Geology 37:451454.CrossRefGoogle Scholar
Bellier, J.-P., and Moullade, M. 2002. Lower Cretaceous planktonic foraminiferal biostratigraphy of the western North Atlantic (ODP Leg 171B), and taxonomic clarification of key index species. Revue de Micropaléontologie 45:926.CrossRefGoogle Scholar
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W. 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13:150160.CrossRefGoogle Scholar
Bice, K. L., Huber, B. T., and Norris, R. D. 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography 18:1031, doi:10.1029/2002PA000848.CrossRefGoogle Scholar
Boersma, A., and Silva, I. Premoli 1989. Atlantic Paleogene biserial heterohelicid foraminifera and oxygen minima. Paleoceanography 4:271286.CrossRefGoogle Scholar
Bornemann, A., and Norris, R. D. 2007. Size-related stable isotope changes in Late Cretaceous planktic foraminifera: implications for paleoecology and photosymbiosis. Marine Micropaleontology 65:3242.CrossRefGoogle Scholar
Bornemann, A., Pross, J., Reichelt, K., Herrle, J. O., Hemleben, C., and Mutterlose, J. 2005. Reconstruction of short-term palaeoceanographic changes during the formation of the Late Albian ‘Niveau Breistroffer’ black shales (Oceanic Anoxic Event 1d, France). Journal of the Geological Society, London 162:623639.CrossRefGoogle Scholar
Bornemann, A., Norris, R. D., Friedrich, O., Beckmann, B., Schouten, S., Damsté, J. S. Sinninghe, Vogel, J., Hofmann, P., and Wagner, T. 2008. Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science 319:189192.CrossRefGoogle ScholarPubMed
Caron, M., and Homewood, P. 1983. Evolution of early planktic foraminifers. Marine Micropaleontology 7:453462.CrossRefGoogle Scholar
Caron, M., and Spezzaferri, S. 2006. Scanning electron microscope documentation of the lost holotypes of Mornod, 1949: Thalmanninella reicheli and Rotalipora montsalvensis . Journal of Foraminiferal Research 36:374378.CrossRefGoogle Scholar
Coccioni, R., and Galeotti, S. 2003. The mid-Cenomanian Event: prelude to OAE 2. Palaeogeography, Palaeoclimatology, Palaeoecology 190:427–40.CrossRefGoogle Scholar
Coxall, H. K., Pearson, P. N., Shackleton, N. J., and Hall, M. A. 2000. Hantkeninid depth adaptation: an evolving life strategy in a changing ocean. Geology 28:8790.2.0.CO;2>CrossRefGoogle Scholar
Coxall, H. K., Wilson, P. A., Pearson, P. N., and Sexton, P. F. 2007. Iterative evolution of digitate planktonic foraminifera. Paleobiology 33:495516.CrossRefGoogle Scholar
Crowley, T. J., and Zachos, J. C. 2000. Comparison of zonal temperature profiles for past warm time periods. Pp. 5076 in Huber, B. T., MacLeod, K. G., and Wing, S. L., eds. Warm climates in earth history. Cambridge University Press, Cambridge.Google Scholar
Dudley, W. C., and Nelson, C. S. 1989. Quaternary surface-water stable isotope signal from calcareous nannofossils at DSDP Site 593, southern Tasman Sea. Marine Micropaleontology 13:353373.CrossRefGoogle Scholar
Dudley, W. C., Blackwelder, P., Brand, L., and Duplessy, J. C. 1986. Stable isotopic composition of coccoliths. Marine Micropaleontology 10:18.CrossRefGoogle Scholar
Ennyu, A., Arthur, M. A., and Pagani, M. 2002. Fine-fraction carbonate stable isotopes as indicators of seasonal shallow mixed-layer paleohydrography. Marine Micropaleontology 46:317342.CrossRefGoogle Scholar
Erbacher, J., Huber, B. T., Norris, R. D., and Markey, M. 2001. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature 409:325327.CrossRefGoogle ScholarPubMed
Fassell, M. L., and Bralower, T. J. 1999. Warm, equable mid-Cretaceous: stable isotope evidence. In Barrera, E. and Johnson, C. C., eds. Evolution of the Cretaceous ocean-climate system. Geological Society of America Special Paper 332:121142.CrossRefGoogle Scholar
Forster, A., Schouten, S., Baas, M., and Damsté, J. S. Sinninghe 2007a. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35:919922.CrossRefGoogle Scholar
Forster, A., Schouten, S., Moriya, K., Wilson, P. A., and Damsté, J. S. Sinninghe 2007b. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: sea surface temperature records from the equatorial Atlantic. Paleoceanography 22:PA1219, doi:10.1029/2006PA001349.CrossRefGoogle Scholar
Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray, D. S., and Huggett, J. M. 2000. Marine biodiversity through the Late Cenomanian-Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. Journal of the Geological Society, London 157:745757.CrossRefGoogle Scholar
González-Donoso, M., Linares, D., and Robaszynski, F. 2007. The rotaliporids, a polyphyletic group of Albian-Cenomanian planktonic foraminifera: emendation of genera. Journal of Foraminiferal Research 37:175186.CrossRefGoogle Scholar
Gruber, N., Keeling, C. D., and Bates, N. R. 2002. Interannual variability in the North Atlantic Ocean carbon sink. Science 298:23742378.CrossRefGoogle ScholarPubMed
Gustafsson, M., Holbourn, A., and Kuhnt, W. 2003. Changes in northeast Atlantic temperature and carbon flux during the Cenomanian/Turonian paleoceanographic event: the Goban Spur stable isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology 201:5166.CrossRefGoogle Scholar
Hart, M. B. 1980. A water depth model for the evolution of the planktonic Foraminiferida. Nature 286:252254.CrossRefGoogle Scholar
Hart, M. B. 1999. The evolution and biodiversity of Cretaceous planktonic Foraminiferida. Geobios 32:247255.CrossRefGoogle Scholar
Hart, M. B., and Bailey, H. W. 1979. The distribution of planktonic Foraminiferida in the mid-Cretaceous of NW Europe. In Wiedmann, J., ed. Aspekte der Kreide Europas. International Union of Geological Sciences A 6:527542.Google Scholar
Hodell, D. A., and Vayavananda, A. 1993. Middle Miocene paleoceanography of the western equatorial Pacific (DSDP site 289) and the evolution of Globorotalia (Fohsella) . Marine Micropaleontology 22:279310.CrossRefGoogle Scholar
Huber, B. T., Hodell, D. A., and Hamilton, C. P. 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107:11641191.2.3.CO;2>CrossRefGoogle Scholar
Huber, B. T., Leckie, R. M., Norris, R. D., Bralower, T. J., and CoBabe, E. 1999. Foraminiferal assemblage and stable isotopic change across the Cenomanian-Turonian boundary in the subtropical North Atlantic. Journal of Foraminiferal Research 29:392417.Google Scholar
Huber, B. T., Norris, R. D., and MacLeod, K. G. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123126.2.0.CO;2>CrossRefGoogle Scholar
Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P. N., Tocher, B. A., Horne, D., and Rosenfeld, A. 1988. Microfossil Assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event. Cretaceous Research 9:3103.CrossRefGoogle Scholar
Kennedy, W. J., Gale, A. S., Lees, J. A., and Caron, M. 2004. The Global Boundary Stratotype Section and Point (GSSP) for the base of the Cenomanian Stage, Mont Risou, Hautes-Alpes, France. Episodes 27:2132.CrossRefGoogle Scholar
Leckie, R. M. 1987. Paleoecology of mid-Cretaceous planktonic foraminifera: a comparison of open ocean and Epicontinental Sea assemblages. Micropaleontology 33:164176.CrossRefGoogle Scholar
Leckie, R. M., Bralower, T. J., and Cashman, R. 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17:1041, doi:10.1029/2001PA000623.CrossRefGoogle Scholar
MacLeod, K. G., Huber, B. T., and Ducharme, M. L. 2000. Paleontological and geochemical constraints on the deep ocean during the Cretaceous greenhouse interval. Pp. 241274 in Huber, B. T., MacLeod, K. G., and Wing, S. L., eds. Warm climates in earth history. Cambridge University Press, Cambridge.Google Scholar
MacLeod, K. G., Huber, B. T., Pletsch, T., Röhl, U., and Kucera, M. 2001. Maastrichtian foraminiferal and paleoceanographic changes on Milankovitch timescales. Paleoceanography 16:133154.CrossRefGoogle Scholar
Marshall, J. D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine 129:143160.CrossRefGoogle Scholar
Nederbragt, A. J., Fiorentino, A., and Klosowska, B. 2001. Quantitative analysis of calcareous microfossils across the Albian-Cenomanian boundary oceanic anoxic event at DSDP Site 547 (North Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology 166:401421.CrossRefGoogle Scholar
Norris, R. D. 2000. Pelagic species diversity, biogeography, and evolution. In Erwin, D. H., and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):236258.CrossRefGoogle Scholar
Norris, R. D., and Wilson, P. A. 1998. Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology 26:823826.2.3.CO;2>CrossRefGoogle Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1993. Evolution of depth ecology in the planktic foraminifera lineage Globorotalia (Fohsella) . Geology 21:975978.2.3.CO;2>CrossRefGoogle Scholar
Norris, R. D. 1996. What is gradualism? Cryptic speciation in globorotaliid foraminifera. Paleobiology 22:386405.CrossRefGoogle Scholar
Norris, R. D., Kroon, D., Klaus, A., et al. 1998. Proceedings of the Ocean Drilling Program, Initial Reports 171B. Ocean Drilling Program, College Station, Tex. CrossRefGoogle Scholar
Norris, R. D., Bice, K. L., Magno, E. A., and Wilson, P. A. 2002. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30:299302.2.0.CO;2>CrossRefGoogle Scholar
Ogg, J. G., and Bardot, L. 2001. Aptian through Eocene magnetostratigraphic correlation of the Blake Nose Transect (Leg 171B), Florida continental margin. In Kroon, D., Norris, R. D., and Klaus, A., eds. Proceedings of the Ocean Drilling Program, Scientific Results 171B:158. Ocean Drilling Program, College Station, Tex. Google Scholar
Ogg, J. G., Agterberg, F. P., and Gradstein, F. M. 2004. The Cretaceous Period. Pp. 344383 in Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Paull, C. K., and Thierstein, H. R. 1987. Stable isotopic fractionation among particles in Quaternary coccolith-sized deep-sea sediments. Paleoceanography 2:423429.CrossRefGoogle Scholar
Paull, C. K. 1990. Comparison of fine fraction with monospecific foraminiferal stable isotopic stratigraphies from pelagic carbonates across the last glacial termination. Marine Micropaleontology 16:207217.CrossRefGoogle Scholar
Pearson, P. N. 1998. Stable isotopes and the study of evolution in planktonic foraminifera. In Norris, R. D. and Corfield, R. M., eds. Isotope paleobiology and paleoecology. Paleontological Society Papers 4:138178.CrossRefGoogle Scholar
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413:481487.CrossRefGoogle ScholarPubMed
Petrizzo, M. R., and Huber, B. T. 2006. Biostratigraphy and taxonomy of Late Albian planktonic foraminifera from ODP Leg 171B (western North Atlantic Ocean). Journal of Foraminiferal Research 36:165189.CrossRefGoogle Scholar
Petrizzo, M. R., Huber, B. T., Wilson, P. A., and MacLeod, K. G. 2008. Late Albian paleoceanography of the western subtropical North Atlantic. Paleoceanography 23:PA1213, doi:10.1029/2007PA001517.CrossRefGoogle Scholar
Silva, I. Premoli, and Sliter, W. V. 1999. Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. In Barrera, E., and Johnson, C. C., eds. Evolution of the Cretaceous ocean-climate system. Geological Society of America Special Paper 332:301328.Google Scholar
Price, G. D., Sellwood, B. W., Corfield, R. M., Clarke, L., and Cartlidge, J. E. 1998. Isotopic evidence for palaeotemperatures and depth stratification of Middle Cretaceous planktonic foraminifera from the Pacific Ocean. Geological Magazine 135:183191.CrossRefGoogle Scholar
Rohling, E. J., Sprovieri, M., Cane, T., Casford, J. S. L., Cooke, S., Bouloubassi, I., Emeis, K. C., Schiebel, R., Rogerson, M., Hayes, A., Jorissen, F. J., and Kroon, D. 2004. Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5. Marine Micropaleontology 50:89123.CrossRefGoogle Scholar
Schrag, D. P., DePaolo, D. J., and Richter, F. M. 1995. Reconstructing past sea surface temperatures: correcting for diagenesis of bulk marine carbonate. Geochimica et Cosmochimica Acta 59:22652278.CrossRefGoogle Scholar
Sellwood, B. W., Price, G. D., and Valdes, P. J. 1994. Cooler estimates of Cretaceous temperatures. Nature 370:453455.CrossRefGoogle Scholar
Sexton, P. F., Wilson, P. A., and Pearson, P. N. 2006. Microstructural and geochemical perspectives on planktic foraminiferal preservation: “glassy” versus “frosty.” Geochemistry, Geophysics, Geosystems 7:Q12P19, doi:10.1029/2006GC001291.CrossRefGoogle Scholar
Shackleton, N. J., and Kennett, J. P. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. In Kennett, J. P., Houtz, R. E., et al. Initial Reports of the Deep Sea Drilling Project 29:743755. U.S. Government Printing Office, Washington, D.C. Google Scholar
Shipboard Scientific Party. 1998. Site 1050. In Norris, R. D., Kroon, D., Klaus, A., et al. Proceedings of the Ocean Drilling Program, Initial Reports 171B:93169. Ocean Drilling Program, College Station, Tex. Google Scholar
Stoll, H. M. 2005. Limited range of interspecific vital effects in coccolith stable isotopic records during the Paleocene Eocene thermal maximum. Paleoceanography 20.PA1007, doi:10.1029/2004PA001046.CrossRefGoogle Scholar
Stoll, H. M., and Bains, S. 2003. Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea. Paleoceanography 18:1049, doi:10.1029/2002PA000875.CrossRefGoogle Scholar
Veizer, J. 1983. Chemical diagenesis of carbonates: theory and application of trace element technique. In Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S. Stable isotopes in sedimentary geology. SEPM Short Course 10:3-1–3-100.Google Scholar
Watkins, D. K., Cooper, M. J., and Wilson, P. A. 2005. Calcareous nannoplankton response to late Albian oceanic anoxic event 1d in the western North Atlantic. Paleoceanography 20:PA2010, doi:10.1029/2004PA001097.CrossRefGoogle Scholar
Wilson, P. A., and Norris, R. D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412:425429.CrossRefGoogle ScholarPubMed
Wilson, P. A., Norris, R. D., and Cooper, M. J. 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology 30:607610.2.0.CO;2>CrossRefGoogle Scholar
Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 9:353387.CrossRefGoogle Scholar
Ziveri, P., Stoll, H., Probert, I., Klaas, C., Geisen, M., Ganssen, G., and Young, J. 2003. Stable isotope Vital effects' in coccolith calcite. Earth and Planetary Science Letters 210:137149.CrossRefGoogle Scholar
Zuraida, R., Holbourn, A., Nürnberg, D., Kuhnt, W., Dürkop, A., and Erichsen, A. 2009. Evidence for Indonesian Throughflow slowdown during Heinrich events 3–5. Paleoceanography 24:PA2205, doi:10.1029/2008PA001653.CrossRefGoogle Scholar