Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T14:13:49.090Z Has data issue: false hasContentIssue false

Electrostatic Ground-Rig Spraying: An Overview

Published online by Cambridge University Press:  12 June 2017

Eric C. Hislop*
Affiliation:
Spray Application Group, Dep. Agric. Sci., U. Bristol, Inst. Arable Cr. Res., Long Ashton Res. Stn., Long Ashton, Bristol BS18 9AF, England

Abstract

Contact, induction, and corona electrostatic charging systems for pesticide spraying are reviewed and are compared with uncharged spraying systems. When uncharged sprays are poorly intercepted by plants, charging significantly increases deposition, drawing from the reservoir normally deposited on the soil. Post-emergent herbicide spraying is the one area where the benefits of electrostatic charging are identified least easily. For insecticides and fungicides where the young crop is the ‘general’ target, increased capture of charged spray may permit reducing doses with economic and environmental benefits. While charging may not increase total capture where uncharged spray interception is good, it does alter spray distribution throughout the crop canopy. The biological consequences of modifying spray distribution depend upon the ‘real’ pesticide target. In situations where the crop acts as an electrical shield limiting spray penetraton, air assistance is necessary to augment charged spray deposition within the crop canopy. Drift of charged spray clouds should be related to drop spectra, velocities and trajectories and requires further study as do protocols for spray charge measurement and definition. In addition to biological performance, the transfer of electrostatic technology to farms is limited because of financial, legal, and practical factors. Identifying specific major crop/pest problems will help to introduce electrostatic spraying, which will complement, rather than replace, traditional spray systems.

Type
Symposium
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Arnold, A. C. 1983. U.K. Patent 2119678A. Patent Office, 25 Southampton Buildings, London WC2A 1AY, England.Google Scholar
2. Arnold, A. C., and Pye, B. J. 1980. Spray application with charged rotary atomisers. Pages 109117 in Spraying Systems for the 1980s. Br. Crop Prot. Conf. Monogr. No. 24.Google Scholar
3. Arnold, A. C., Cayley, G. R., Dunne, Y., Etheridge, D. C., Greenway, A. R., Griffiths, D. C., Phillips, F. T., Pye, B. J., Rawlinson, C. J., and Scott, G. C. 1984. Biological effectiveness of electrostatically charged rotary atomisers. III. Trials on arable crops other than cereals, 1982. Ann. Appl. Biol. 105:369377.Google Scholar
4. Arnold, A. C., Cayley, G. R., Dunne, Y., Etheridge, D. C., Griffiths, D. C., Phillips, F. T., Pye, B. J., Scott, G. C., and Vojvodic, P. R. 1984. Biological effectiveness of electrostatically charged rotary atomisers. I. Trials on field beans and barley, 1981. Ann. Appl. Biol. 105:353359.Google Scholar
5. Arnold, A. C., Cayley, G. R., Dunne, Y., Etheridge, D. C., Griffiths, D. C., Jenkyn, J. F., Phillips, F. T., Pye, B. J., Scott, G. C., and Woodcock, C. M. 1984. Biological effectivness of electrostatically charged rotary atomisers. II. Trials with cereals, 1982. Ann. Appl. Biol. 105:361367.CrossRefGoogle Scholar
6. Bailey, A. G. 1986. The theory and practice of electrostatic spraying. Atomisation Spray Technol. 2:95134.Google Scholar
7. Cayley, G. R., Etheridge, P. E., Goodchild, R. E., Griffiths, D. C., Hulme, P. J., Lewthwaite, R. J., Pye, B. J., and Scott, G. C. 1985. Review of the relationship between chemical deposits achieved with electrostatically charged rotary atomisers and their biological effects. Pages 8796 in Application and Biology. Br. Crop Prot. Conf. Monogr. No. 28.Google Scholar
8. Cayley, G. R., Etheridge, P. E., Griffiths, D. C., Phillips, F. T., Pye, B. J., and Scott, G. C. 1984. A review of the performance of electrostatically charged rotary atomisers on different crops. Ann. Appl. Biol. 105:379386.Google Scholar
9. Coffee, R. A. 1979. Electrodynamic energy – a new approach to pesticide application. Proc. Br. Crop Prot. Conf. – Pests Dis. 3:777789.Google Scholar
10. Coffee, R. A. 1980. Electrodynamic spraying. Pages 95107 in Spraying Systems for the 1980s. Br. Crop Prot. Conf. Monogr. No. 24.Google Scholar
11. Cooke, B. K., and Hislop, E. C. 1987. Novel delivery systems for arable crop spraying – deposit distribution and biological activity. Aspects Appl. Biol. 14:5370.Google Scholar
12. Cooke, B. K., Hislop, E. C., Herrington, P. J., Western, N. M., Jones, K. G., Woodley, S. E., and Chapple, A. C. 1986. Physical, chemical and biological appraisal of alternative spray techniques in cereals. Crop Prot. 5;155164.Google Scholar
13. Endacott, C. J. 1983. Non-target organism mortality – A comparison of spraying techniques. Proc. 10th Int. Congr. Plant Pathol. 2:502.Google Scholar
14. Ganzelmeier, H., and Moser, E. 1980. Electrostatische Aufladung von Spritzflussingkeiten zur Veresserung der Applikationstechnik. Grundlagen der Landtechnik 4:122125.Google Scholar
15. Herzog, G. A., Lambert, W. R. III, Law, S. E., Seigler, W. E., and Giles, D. K. 1983. Evaluation of an electrostatic spray application system for control of insect pests in cotton. J. Econ. Entomol. 76:637640.CrossRefGoogle Scholar
16. Hill, J., Hawtree, J. N., Chester, G., and Swaine, H. 1983. Prototype testing for safety in use of vehicle-mounted ‘Electrodyn’ sprayers. Proc. 10th Int. Congr. Plant Prot. 2:673.Google Scholar
17. Hislop, E. C. 1984. Crop spraying – Theory and practice. Proc. Crop Prot. North. Brit. 240251.Google Scholar
18. Hislop, E. C. 1987. Can we define and achieve optimum pesticide deposits? Aspects Appl. Biol. 14:153172.Google Scholar
19. Hislop, E. C., Cooke, B. K., and Harman, J.M.P. 1983. Deposition and biological efficacy of a fungicide applied in charged and uncharged sprays in cereal crops. Crop Prot. 2:305316.Google Scholar
20. Johnstone, D. R., Cooper, J. F., Gledhill, J. A., and Jowah, P. 1982. Preliminary trials to examine the drift of charged spray droplets. Proc. Br. Crop Prot. Conf. – Weeds 3:10251033.Google Scholar
21. Lake, J. R., Frost, A. R., and Wilson, J. M. 1980. The flight times of spray drops under the influence of gravitational, aerodynamic and electrostatic forces. Pages 119–125 in Spraying Systems for the 1980s. Br. Crop Prot. Conf. Monogr. No. 24.Google Scholar
22. Lake, J. R., and Marchant, J. A. 1984. Wind tunnel experiments and a mathematical model of electrostatic spray deposition in barley. J. Agric. Eng. Res. 30:185195.Google Scholar
23. Law, S. E. 1978. Embedded-electrode electrostatic-induction spray-charging nozzle: Theoretical and engineering design. Am. Soc. Agric. Eng. 21:10961104.Google Scholar
24. Law, S. E. 1983. Electrostatic pesticide spraying: concepts and practice. IEEE Trans. Ind. Applic. 1A-19:160168.Google Scholar
25. Law, S. E. 1987. Basic phenomena active in electrostatic pesticide spraying. Pages 81105 in Brent, K. J. and Atkin, R. K., eds. Rational Pesticide Use. Cambridge Univ. Press, Cambridge.Google Scholar
26. Law, S. E., and Cooper, S. C. 1987. Induction charging characteristics of conductivity enhanced vegetable-oil sprays. Trans. Am. Soc. Agric. Eng. 30:7579.Google Scholar
27. Law, S. E., and Lane, M. D. 1981. Electrostatic deposition of pesticide spray onto foliar targets of varying morphology. Trans. Am. Soc. Agric. Eng. 24:14411445, 1448. Google Scholar
28. Law, S. E., Marchant, J. A., and Bailey, A. G. 1985. Charged-spray deposition characteristics within cereal crops. IEEE Trans. Ind. Applic. 1A-21:685693.Google Scholar
29. Marchant, J. A. 1980. Electrostatic spraying–some basic principles. Proc. Br. Crop Prot. Conf.–Weeds 3:987997.Google Scholar
30. Marchant, J. A. 1985. An electrostatic spinning disc atomiser. Trans. Am. Soc. Agric. Eng. 28:386392.Google Scholar
31. Marchant, J. A., and Green, R. 1982. An electrostatic charging system for hydraulic spray nozzles. J. Agric. Eng. Res. 27:309319.Google Scholar
32. Marchant, J. A., Dix, A. J., and Wilson, J. M. 1985. The electrostatic charging of spray produced by hydraulic nozzles. I. Theoretical analysis, J. Agric. Eng. Res. 31:329344.Google Scholar
33. Marchant, J. A., Dix, A. J. and Wilson, J. M. 1985. The electrostatic charging of spray produced by hydraulic nozzles. II. Measurements. J. Agric. Eng. Res. 31:345360.CrossRefGoogle Scholar
34. Moser, E., and Schmidt, K. 1983. Einige Grundlagen der Elektrostatik im chemischen Pflanzenschutz. Landtechnik 33:96100.Google Scholar
35. Moser, E., Ganzelmeier, H., and Schmidt, K. 1982. Das Anlagerungsverhalten electrostatisch geladener Spritzflussigkeitsteilchen in Flachen- und Raumkulturen. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 34:5764.Google Scholar
36. Moser, E., Schmidt, K., and Hussain, D. 1983. Electrostatik im chemischen Pflanzenschutz Ergebnisse mit tragbaren Kleingeraten. Landtechnik 38:155156.Google Scholar
37. Moser, E., Schmidt, K., and Metz, N. 1983. Electrostatische Auflugdung von Spritzflussigkeiten fur den chemischen Pflanzenschutz im Obstbau. Erwerbsobstbau 25:220228.Google Scholar
38. Parham, M. R. 1982. Weed control in arable crops with the ‘Electrodyn’ sprayer. Proc. Br. Crop Prot. Conf.–Weeds 3:10171023.Google Scholar
39. Pascoe, R. 1985. Biological results obtained with the handheld ‘Electrodyn’ spraying system. Pages 7585 in Application and Biology. Br. Crop Prot. Conf. Monogr. No. 28.Google Scholar
40. Pay, C. C. 1984. Testing the performance of a new electrostatic spraying system. Proc. Br. Crop Prot. Conf.–Pests Dis. 3:10131019.Google Scholar
41. Pay, C. C. 1985. System ES, an electrostatic spraying system–1984 U.K. trials. Pages 113120 in Application and Biology. Br. Crop Prot. Conf. Monogr. No. 28.Google Scholar
42. Phillips, M. C., and Harrington, T. 1985. Preliminary experiments on the use of induction charged nozzles for applying a herbicide to control broad-leaved weeds in cereals. Pages 121123 in Application and Biology. Br. Crop Prot. Conf. Monogr. No. 28.Google Scholar
43. Pye, B. J. 1983. Application techniques to increase crop penetration of charged sprays. Proc. 10th Int. Congr. Plant Prot. 2:504.Google Scholar
44. Robinson, T. H., and Garnet, R. P. 1984. The influence of electrostatic charging, drop size, and volume of application on the deposition of propiconazole and its resultant control of cereal disease. Proc. Br. Crop Prot. Conf.–Pests Dis. 3:10571065.Google Scholar
45. Sharp, R. B. 1984. Comparison of drift from charged and uncharged hydraulic nozzles. Proc. Br. Crop Prot. Conf.–Pests Dis. 3:10271031.Google Scholar
46. Sharp, R. B., Marchant, J. A., Smith, P. D., and Taylor, W. A. 1983. Herbicide application with an electrostatic hydraulic sprayer. Nat. Inst. Agric. Eng., Silsoe, Divisional note DN1192.Google Scholar
47. Simmons, H. C., and Lehtinen, J. R. 1986. The characteristics of an electrostatically-charged air-atomised spray for pesticide application. 7th Symp. Pestic. Formulat. Applic. Syst. (ASTM), Phoenix, AZ.Google Scholar
48. Tottman, D. R., and Makepeace, R. J. 1979. An explanation of the decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 93:221234.Google Scholar
49. Western, N. M., and Woodley, S. E. 1987. Influence of drop size and application volume on the effectiveness of two herbicides. Aspects Appl. Biol. 14:181192.Google Scholar
50. Wilson, J. M. 1982. A linear source of electrostatically charged spray. J. Agric. Engr. Res. 27:355362.Google Scholar