Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T14:33:54.281Z Has data issue: false hasContentIssue false

The Impact of Semantic Dementia on Everyday Actions: Evidence from an Ecological Study

Published online by Cambridge University Press:  19 November 2012

Nathalie Bier*
Affiliation:
École de réadaptation, Université de Montréal, Montréal, Québec, Canada Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
Carolina Bottari
Affiliation:
École de réadaptation, Université de Montréal, Montréal, Québec, Canada Centre de recherche interdisciplinaire en réadaptation de Montréal– site Centre de réadaptation Lucie Bruneau, Montréal, Québec, Canada
Carol Hudon
Affiliation:
Département de psychologie, Université Laval, Québec, Québec, Canada Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada
Sven Joubert
Affiliation:
Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada Département de psychologie, Université de Montréal, Montréal, Québec, Canada
Guillaume Paquette
Affiliation:
Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
Joël Macoir
Affiliation:
Centre de recherche de l'Institut universitaire en santé mentale de Québec, Québec, Canada Département de réadaptation, Université Laval, Québec, Québec, Canada
*
Correspondence and reprint requests to: Nathalie Bier, Centre de recherche de l'Institut universitaire de gériatrie de Montréal, 4565, chemin Queen-Mary, Montréal (Québec), Canada, H3W 1W5. E-mail: nathalie.bier@umontreal.ca

Abstract

In theory, semantic memory may trigger and support the execution of everyday activities. This study explored this question by comparing three patients with semantic dementia to 40 normal controls performing different everyday activities. Participants were tested in their home using the Instrumental Activities of Daily Living Profile, an ecological measure of everyday functioning. Participants were informed that they had unknowingly invited two guests for lunch and should prepare accordingly. With these instructions, they dress to go outdoors, go to the grocery store, shop for food, prepare a hot meal, have the meal with the guests, and clean up after the meal. Performance was analyzed on the basis of four operations related to problem solving: formulate a goal, plan, execute, and verify attainment of the goal. Results indicate that compared to normal controls, two patients had significant difficulties and needed assistance with all operations of problem-solving, particularly while preparing a meal and cleaning up after the meal. One patient showed no difficulties despite severe semantic deficits. These results suggest that semantic deficits alone cannot explain the difficulties observed, but may contribute to some aspects of everyday actions such as those involved in everyday problem-solving. (JINS, 2012, 18, 1–11)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armus, S.R., Brookshire, R.H., Nicholas, L.E. (1989). Aphasic and non-brain-damaged adults' knowledge of scripts for common situations. Brain Lang, 36, 518528. doi:10.1016/0093-934X(89)90082-5CrossRefGoogle ScholarPubMed
Barbeau, E., Tramoni, E., Joubert, S., Mancini, J., Ceccaldi, M., Poncet, M. (2004). Evaluation de la mémoire de reconnaissance visuelle: Normalisation d'une nouvelle épreuve en choix forcé (DMS48) et utilité en neuropsychologie clinique [Evaluation of visual memory recognition: Norms of a new test of forced recognition (DMS48) and its utility in clinical neuropsychology]. In M. Van der Linden (Ed.), L’évaluation des troubles de la mémoire (pp. 85101). Marseille: Solal.Google Scholar
Barsalou, L.W. (2003). Situated simulation in the human conceptual system. Language and Cognitive Processes, 18, 513562.CrossRefGoogle Scholar
Barsalou, L.W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617645. doi:10.1146/annurev.psych.59.103006.093639CrossRefGoogle ScholarPubMed
Barsalou, L.W., Sewell, D.L. (1985). Contrasting the representation of scripts and categories. Journal of Memory and Language, 24, 646665.CrossRefGoogle Scholar
Bechara, A., Damasio, H., Damasio, A.R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295307. doi:10.1093/cercor/10.3.295CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, A.R., Damasio, H., Anderson, S.W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715. doi:10.1016/0010-0277(94)90018-3CrossRefGoogle ScholarPubMed
Bier, N., Macoir, J. (2009). How to make a spaghetti sauce with a dozen small things I cannot name: A review of the impact of semantic-memory deficits on everyday actions. Journal of Clinical and Experimental Neuropsychology, 32, 201211. doi:10.1080/13803390902927885CrossRefGoogle Scholar
Bier, N., Macoir, J., Hudon, C., Bottari, C., Joubert, S. (2009). Agir sur le monde qui nous entoure: Réflexions sur l'interrelation entre la mémoire sémantique, les actions routinières et la résolution de problèmes [Interacting with the world around us: Reflections on the relationship between semantic memory, everyday actions and problem solving]. Revue de Neuropsychologie, 1, 229237.Google Scholar
Bier, N., Macoir, J., Joubert, S., Bottari, C., Chayer, C., Pigot, H., … the SemAssist Team (2011). Cooking “shrimp à la créole”: A pilot study of an ecological rehabilitation in semantic dementia. Neuropsychological Rehabilitation, 21, 455483. doi:10.1080/09602011.2011.580614CrossRefGoogle ScholarPubMed
Binder, J.R., Desai, R.H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527536. doi:S1364-6613(11)00214-2CrossRefGoogle ScholarPubMed
Bottari, C., Dassa, C., Rainville, C., Dutil, E. (2009a). The criterion-related validity of the IADL Profile with measures of executive functions, indices of trauma severity and sociodemographic characteristics. Brain Injury, 23, 322335. doi:10.1080/02699050902788436CrossRefGoogle ScholarPubMed
Bottari, C., Dassa, C., Rainville, C., Dutil, E. (2009b). The factorial validity and internal consistency of the instrumental activities of daily living profile in individuals with a traumatic brain injury. Neuropsychological Rehabilitation, 19, 177207. doi:901753073CrossRefGoogle ScholarPubMed
Bottari, C., Dassa, C., Rainville, C., Dutil, E. (2010a). A generalizability study of the instrumental activities of daily living profile. Archives of Physical Medicine and Rehabilitation, 91, 734742. doi:10.1016/j.apmr.2009.12.023CrossRefGoogle ScholarPubMed
Bottari, C.L., Dassa, C., Rainville, C.M., Dutil, E. (2010b). The IADL profile: Development, content validity, intra- and interrater agreement. Canadian Journal of Occupational Therapy, 77, 90100. doi:10.2182/cjot.2010.77.2.5CrossRefGoogle ScholarPubMed
Bottari, C., Gosselin, N., Guillemette, M., Lamoureux, J., Ptito, A. (2011). Independence in managing one's finances after traumatic brain injury. Brain Injury, 25, 13061317. doi:10.3109/02699052.2011.624570CrossRefGoogle ScholarPubMed
Botvinick, M., Plaut, D.C. (2004). Doing without schema hierarchies: A recurrent connectionist approach to normal and impaired routine sequential action. Psychology Review, 111, 395429. doi:10.1037/0033-295X.111.2.395CrossRefGoogle ScholarPubMed
Bozeat, S., Lambon-Ralph, M.A., Patterson, K., Hodges, J.R. (2002). When objects lose their meaning: What happens to their use? Cognitive, Affective & Behavioral Neuroscience, 2, 236251. doi:10.3758/CABN.2.3.236CrossRefGoogle ScholarPubMed
Brambati, S.M., Rankin, K.P., Narvid, J., Seeley, W.W., Dean, D., Rosen, H.J., Gorno-Tempini, M.L. (2009). Atrophy progression in semantic dementia with asymmetric temporal involvement: A tensor-based morphometry study. Neurobiology of Aging, 30, 103111. doi:10.1016/j.neurobiolaging.2007.05.014CrossRefGoogle ScholarPubMed
Burgess, P.W., Shallice, T. (1997). The Hayling and Brixton Tests. Thurston, UK: Thames Valley Test Company.Google Scholar
Buxbaum, L.J., Kalenine, S. (2010). Action knowledge, visuomotor activation, and embodiment in the two action systems. Annals of the New York Academy of Science, 1191, 201218. doi:NYAS5447CrossRefGoogle ScholarPubMed
Buxbaum, L.J., Schwartz, M., Carew, T.G. (1997). The role of semantic memory in object use. Cognitive Neuropsychologie, 14, 219254. doi:10.1080/026432997381565CrossRefGoogle Scholar
Callahan, B.L., Macoir, J., Hudon, C., Bier, N., Chouinard, N., Cossette-Harvey, M., Potvin, O. (2010). Normative Data for the Pyramids and Palm Trees Test in the Quebec-French Population. Archives of Clinical Neuropsychology, 25, 212217. doi:10.1093/arclin/acq013CrossRefGoogle ScholarPubMed
Coccia, M., Bartolini, M., Luzzi, S., Provinciali, L., Lambon-Ralph, M. (2004). Semantic memory is an amodal, dynamic system: Evidence from the interaction of naming and object use in semantic dementia. Cognitive Neuropsychoogy, 21, 513527.CrossRefGoogle ScholarPubMed
Cooper, R. (2002). Order and disorder in everyday action: The roles of contention scheduling and supervisory attention. Neurocase, 8, 6178.CrossRefGoogle ScholarPubMed
Cooper, R., Schwartz, M.F., Yule, P., Shallice, T. (2005). The simulation of action disorganisation in complex activities of daily living. Cognitive Neuropsychology, 22, 9591004. doi:10.1080/02643290442000419CrossRefGoogle ScholarPubMed
Cooper, R., Shallice, T. (2000). Contention scheduling and the control of routine activities. Cognitive Neuropsychology, 17, 297338.CrossRefGoogle ScholarPubMed
Cooper, R., Shallice, T. (2006). Hierarchical schemas and goals in the control of sequential behaviour. Psychological Review, 113, 887916. doi:10.1037/0033-295X.113.4.887CrossRefGoogle Scholar
Cooper, R.P. (2007). Tool use and related errors in ideational apraxia: The quantitative simulation of patient error profiles. Cortex, 43, 319337. doi:10.1016/S0010-9452(08)70458-1CrossRefGoogle ScholarPubMed
Crawford, J.R., Howell, D.C. (1998). Comparing an individual's test score against norms derived from small samples. The Clinical Neuropsychologist, 12, 482486. doi:10.1076/clin.12.4.482.7241CrossRefGoogle Scholar
Delis, D.C., Kaplan, E., Kramer, J.H. (2001). Delis-Kaplan Executive Function System (D-KEFS). San Antonio, TX: The Psychological Corporation.Google Scholar
Deloche, G., Hannequin, D. (1997). Test de dénomination orale d'images-DO 80 [Oral naming test of images – DO 80]. Paris: Éditions du Centre de Psychologie Appliquée.Google Scholar
Desgranges, B., Matuszewski, V., Piolino, P., Chetelat, G., Mezenge, F., Landeau, B., Eustache, F. (2007). Anatomical and functional alterations in semantic dementia: A voxel-based MRI and PET study. Neurobiology of Aging, 28, 19041913. doi:10.1016/j.neurobiolaging.2006.08.006CrossRefGoogle ScholarPubMed
Fastenau, P.S., Denburg, N.L., Hufford, B.J. (1999). Adult norms for the Rey-Osterrieth Complex Figure Test and for supplemental recognition and matching trials from the Extended Complex Figure Test. The Clinical Neuropsychologist, 13, 3047. doi:10.1076/clin.13.1.30.1976CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). Mini-Mental State: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
Funnell, E. (2001). Evidence for scripts in semantic dementia: Implications for theories of semantic memory. Cognitive Neuropsychology, 18, 323341. doi:10.1080/02643290042000134CrossRefGoogle ScholarPubMed
Galambos, J.A. (1986). Knowledge structures for common activities. In J. A. Galambos, R. P. Abelson, & J. B. Black (Eds.), Knowledge structures (pp. 2147). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Galambos, J.A., Rips, L.J. (1982). Memory four routines. Journal of Verbal Learning and Verbal Behavior, 21, 260281.CrossRefGoogle Scholar
Godbout, L., Doyon, J. (1995). Mental representation of knowledge following frontal-lobe or postrolandic lesions. Neuropsychologia, 33, 16711696. doi:10.1016/0028-3932(95)00047-XCrossRefGoogle ScholarPubMed
Grafman, J. (1995). Similarities and distinctions among current models of prefrontal cortical functions. Annals of the New York Academy of Sciences, 769, 337338. doi:10.1111/j.1749-6632.1995.tb38149.xCrossRefGoogle ScholarPubMed
Grafman, J. (2002). The structured event complex and the human prefrontal cortex. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 292310). New York: Oxford University Press, Inc.CrossRefGoogle Scholar
Grafman, J., Thompson, K., Weingartner, H., Martinez, R., Lawlor, B.A., Sunderland, T. (1991). Script generation as an indicator of knowledge representation in patients with Alzheimer's disease. Brain and Language, 40, 344358. doi:10.1016/0093-934X(91)90134-MCrossRefGoogle ScholarPubMed
Hamanaka, T., Matsui, A., Yoshida, S., Nakanishi, M., Fujita, K., Banno, T. (1996). Cerebral laterality and category-specificity in cases of semantic memory impairment with PET findings associated with identification amnesia for familiar faces. Brain and Cognition, 30, 368372.Google Scholar
Hodges, J.R., Bozeat, S., Lambon-Ralph, M.A., Patterson, K., Spatt, J. (2000). The role of conceptual knowledge in object use – Evidence from semantic dementia. Brain, 123, 19131925. doi:10.1093/brain/123.9.1913CrossRefGoogle ScholarPubMed
Hodges, J.R., Patterson, K., Oxbury, S., Funnel, E. (1992). Semantic dementia: Progessive fluent aphasia with temporal lobe atrophy. Brain, 115, 17831806.CrossRefGoogle Scholar
Hodges, J.R., Spatt, J., Patterson, K. (1999). “What and how”: Evidence for the dissociation of object knowledge and mecanical problem-solving skills in the human brain. Proceeding of The National Academy of Sciences of the United States of America, 96, 94449448. doi:10.1073/pnas.96.16.9444CrossRefGoogle Scholar
Howard, D., Patterson, K. (1992). The pyramids and palm trees test: A test for semantic access from words and pictures. Bury St Edmunds: Thames Valley Test Company.Google Scholar
Humphreys, G.W., Forde, E.M.E. (1998). Disordered action schema and action disorganisation syndrome. Cognitive Neuropsychology, 15, 771811.Google Scholar
Joanette, Y., Ska, B., Poissant, A., Belleville, S., Lecours, A.R., Peretz, I. (Eds.). (1995). Protocole d’évaluation optimale neuropsychologique (PENO) [Optimal Neuropsychological Evaluation Protocole]. Centre de recherche en santé et vieillissement, Institut universitaire de gériatrie de Montréal (CAN): Université de Montréal.Google Scholar
Kashibayashi, T., Ikeda, M., Komori, K., Shinagawa, S., Shimizu, H., Toyota, Y., Tanimukai, S. (2010). Transition of distinctive symptoms of semantic dementia during longitudinal clinical observation. Dementia and Geriatric Cognitive Disorders, 29, 224232. doi:10.1159/000269972CrossRefGoogle ScholarPubMed
Krueger, F., Spampinato, M.V., Barbey, A.K., Huey, E.D., Morland, T., Grafman, J. (2009). The frontopolar cortex mediates event knowledge complexity: A parametric functional MRI study. Neuroreport, 20, 10931097. doi:10.1097/WNR.0b013e32832e7ea5CrossRefGoogle ScholarPubMed
Lauro-Grotto, R., Piccini, C., Shallice, T. (1997). Modality-specific operations in semantic dementia. Cortex, 33, 593622. doi:10.1016/S0010-9452(08)70720-2CrossRefGoogle ScholarPubMed
Lojek-Osiejuk, E. (1996). Knowledge of scripts reflected in discourse of aphasics and right-brain-damaged patients. Brain Lang, 53, 5880. doi:10.1006/brln.1996.0037CrossRefGoogle ScholarPubMed
Macoir, J., Gauthier, S., Jean, C. (2005). Batterie d’Évaluation Cognitive du Langage chez l'Adulte (BECLA). Québec: Université Laval.Google Scholar
Martin, A., Wiggs, C.L., Ungerleider, L.G., Haxby, J.V. (2000). Category specificity and the brain the sensory/motor model of semantic representations of objects. In M.S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 10231036). Cambridge, MA: The MIT Press.Google Scholar
Mattis, S. (1976). Mental status examination for organic mental syndrome in the elderly patient. In L. Bellak & T. B. Karasu (Eds.), Geriatric psychiatry (pp. 77121). New York: Grune and Stratton.Google Scholar
Mioshi, E., Hodges, J.R. (2009). Rate of change of functional abilities in frontotemporal dementia. Dementia and Geriatric Cognitive Disorders, 28, 419426. doi:10.1159/000255652CrossRefGoogle ScholarPubMed
Mioshi, E., Kipps, C.M., Dawson, K., Mitchell, J., Graham, A., Hodges, J.R. (2007). Activities of daily living in frontotemporal dementia and Alzheimer disease. Neurology, 68, 20772084. doi:10.1212/01.wnl.0000264897.13722.53CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J.S., Gustafson, L., Passant, U., Stuss, D., Black, S., Benson, D.F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51, 15461554.CrossRefGoogle ScholarPubMed
Negri, G.A., Lunardelli, A., Reverberi, C., Gigli, G.L., Rumiati, R.I. (2007). Degraded semantic knowledge and accurate object use. Cortex, 43, 376388. doi:10.1016/S0010-9452(08)70463-5CrossRefGoogle ScholarPubMed
Rey, A. (1960). Test de la Figure complexe de Rey.[Rey Complex Figure Test]. Paris: Les Éditions du Centre de Psychologie Appliquée.Google Scholar
Riddoch, M.J., Humphreys, G.W. (Eds.). (1993). Birmingham Object Recognition Battery (BORB). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Riddoch, M.J., Humphreys, G.W., Heslop, J., Castermans, E. (2002). Dissociations between object knowledge and everyday action. Neurocase, 8, 100110. doi:10.1093/neucas/8.1.100CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of actions. Nature Reviews Neuroscience, 12, 661670. doi:10.1038/35090060CrossRefGoogle Scholar
Rosen, H.J., Allison, S.C., Ogar, J.M., Amici, S., Rose, K., Dronkers, N., Gorno-Tempini, M.L. (2006). Behavioral features in semantic dementia vs other forms of progressive aphasias. Neurology, 67, 17521756. doi:10.1212/01.wnl.0000247630.29222.34CrossRefGoogle ScholarPubMed
Rosen, H.J., Gorno-Tempini, M.L., Goldman, W.P., Perry, R.J., Schuff, N., Weiner, M., Miller, B.L. (2002). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58, 198208.CrossRefGoogle ScholarPubMed
Schank, R., Abelson, R. (1977). Scripts, plans, goals and understanding: An inquiry into human knowledge structures. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Shinagawa, S., Ikeda, M., Fukuhara, R., Tanabe, H. (2006). Initial symptoms in frontotemporal dementia and semantic dementia compared with Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 21, 7480. doi:10.1159/000090139CrossRefGoogle ScholarPubMed
Sirigu, A., Zalla, T., Pillon, B., Grafman, J., Dubois, B., Agid, Y. (1995). Planning and script analysis following prefrontal lobe lesions. Annals of the New York Academy of Sciences, 769, 277288. doi:10. 1111/j.1749-6632.1995.tb38145.xCrossRefGoogle ScholarPubMed
Snowden, J.S., Bathgate, D., Varma, A., Blackshaw, A., Gibbons, Z.C., Neary, D. (2001). Distinct behavioural profiles in frontotemporal dementia and semantic dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 70, 323332. doi:10.1136/jnnp.70.3.323CrossRefGoogle ScholarPubMed
Spreen, O., Strauss, E. (Eds.). (1998). A compendium of neuropsychological tests. New York: Orford University Press, Inc.Google Scholar
Weschler, D. (1987). Wechsler Memory Scale – Revised. San Antonio, TX: The Psychological Corporation.Google Scholar