Hostname: page-component-cb9f654ff-pvkqz Total loading time: 0 Render date: 2025-08-06T05:18:54.220Z Has data issue: false hasContentIssue false

A Location-Allocation-Vehicle Routing Model for Humanitarian Blood Supply Chain in Aftermath of Earthquake under IER Uncertainty Considering Quality Concepts

Published online by Cambridge University Press:  21 May 2025

Shiva Moslemi
Affiliation:
Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
Abolfazl Mirzazadeh*
Affiliation:
Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
Mohammad Mohammadi
Affiliation:
Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
*
Corresponding author: Abolfazl Mirzazadeh; Email: mirzazadeh@khu.ac.ir

Abstract

This paper presents a Location-Allocation-Vehicle Routing Problem to design a humanitarian blood supply chain in response to earthquakes, incorporating quality concepts, reliability, and horizontal communication. The aim of the model is to minimize the total cost, minimize maximum shortage of demand points with high priority and low route value, and maximize the satisfaction of customers, including donors, hospitals, and blood transfusion centers. In order to deal with considerations of real world, the structure of the blood supply chain and all the intricacies incorporated in the model are defined based on the network and challenges of Blood Transfusion Center of Tehran. In addition, the blood demand and reliability of routes and facilities are considered uncertain, and the Interval Evidential Reasoning (IER) approach is used to handle the uncertainty. Since the problem is NP-hard, NSGAII and MOPSO algorithms have been applied to solve it. To demonstrate the efficiency of the model and compare the algorithms, several numerical examples in different sizes are designed. Finally, the most favorable algorithm is chosen for each size using the TOPSIS method.

Information

Type
Original Research
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Pierskalla, WP. Supply chain management of blood banks. In: Operations Research and Health Care. 2005:103145. doi:10.1007/1-4020-8066-2_5CrossRefGoogle Scholar
Nagurney, A, Masoumi, AH, Yu, M. Supply chain network operations management of a blood banking system with cost and risk minimization. Comput Manag Sci. 2012;9(2):205231. doi:10.1007/s10287-011-0133-zCrossRefGoogle Scholar
Nagurney, A, Masoumi, AH. Supply chain network design of a sustainable blood banking system. In: Sustainable Supply Chains. 2012:4972. doi:10.1007/978-1-4419-6105-1_5CrossRefGoogle Scholar
Muriel, AF, Brailsford, S, Smith, H. A bi-objective optimization model for technology selection and donor’s assignment in the blood supply chain. Syst Telemática. 2014;12(30):925. doi:10.18046/syt.v12i30.1854CrossRefGoogle Scholar
Hemmelmayr, V, Doerner, KF, Hartl, RF, et al. Vendor managed inventory for environments with stochastic product usage. Eur J Oper Res. 2010;202(3):686695. doi:10.1016/j.ejor.2009.06.003CrossRefGoogle Scholar
Kaveh, A, Ghobadi, M. A multistage algorithm for blood banking supply chain allocation problem. Int J Civ Eng. 2017;15(1):103112. doi:10.1007/s40999-016-0032-3CrossRefGoogle Scholar
Daskin, MS, Coullard, CR, Shen, ZJ. An inventory-location model: formulation, solution algorithm and computational results. Ann Oper Res. 2002;110(1):83106. doi:10.1023/A:1020763400324CrossRefGoogle Scholar
Shen, ZJ, Coullard, C, Daskin, MS. A joint location-inventory model. Transp Sci. 2003;37(1):4055. doi:10.1287/trsc.37.1.40.12823CrossRefGoogle Scholar
Cetin, E, Sarul, LS. A blood bank location model: A multiobjective approach. Eur J Pure Appl Math. 2009;2(1):112124.Google Scholar
Şahin, G, Süral, H, Meral, S. Locational analysis for regionalization of Turkish Red Crescent blood services. Comput Oper Res. 2007;34(3):692704. doi:10.1016/j.cor.2005.03.020CrossRefGoogle Scholar
Arvan, M, Tavakkoli-Moghaddam, R, Abdollahi, M. Designing a bi-objective and multi-product supply chain network for the supply of blood. Uncertain Supply Chain Manag. 2015;3(1):5768. doi:10.5267/j.uscm.2014.8.004CrossRefGoogle Scholar
Zahiri, B, Mousazadeh, M, Bozorgi-Amiri, A. A robust stochastic programming approach for blood collection and distribution network design. Int J Res Ind Eng. 2014;3(2):111.Google Scholar
Salehipour, A, Sepehri, MM. Exact and heuristic solutions to minimize total waiting time in the blood products distribution problem. Adv Oper Res. 2012;2012:19. doi:10.1155/2012/393890Google Scholar
Gunpinar, S, Centeno, G. An integer programming approach to the bloodmobile routing problem. Transp Res Part E Logist Transp Rev. 2016;86:94115. doi:10.1016/j.tre.2015.12.005CrossRefGoogle Scholar
Hamdan, B, Diabat, A. A two-stage multi-echelon stochastic blood supply chain problem. Comput Oper Res. 2019;101:130143. doi:10.1016/j.cor.2018.09.001CrossRefGoogle Scholar
Ensafian, H, Yaghoubi, S, Yazdi, MM. Raising quality and safety of platelet transfusion services in a patient-based integrated supply chain under uncertainty. Comput Chem Eng. 2017;106:355372. doi:10.1016/j.compchemeng.2017.06.015CrossRefGoogle Scholar
Heidari-Fathian, H, Pasandideh, SH. Green-blood supply chain network design: Robust optimization, bounded objective function & Lagrangian relaxation. Comput Ind Eng. 2018;122:95105. doi:10.1016/j.cie.2018.05.051CrossRefGoogle Scholar
Fahimnia, B, Jabbarzadeh, A, Ghavamifar, A, et al. Supply chain design for efficient and effective blood supply in disasters. Int J Prod Econ. 2017;183:700709. doi:10.1016/j.ijpe.2015.11.007CrossRefGoogle Scholar
Jabbarzadeh, A, Fahimnia, B, Seuring, S. Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application. Transp Res Part E Logist Transp Rev. 2014;70:225244. doi:10.1016/j.tre.2014.06.003CrossRefGoogle Scholar
Sha, Y, Huang, J. The multi-period location-allocation problem of engineering emergency blood supply systems. Syst Eng Procedia. 2012;5:2128. doi:10.1016/j.sepro.2012.04.004CrossRefGoogle Scholar
Marianov, V, Serra, D. Location–allocation of multiple-server service centers with constrained queues or waiting times. Ann Oper Res. 2002;111(1):3550. doi:10.1023/A:1020989316737CrossRefGoogle Scholar
Kohneh, JN, Teymoury, E, Pishvaee, MS. Blood products supply chain design considering disaster circumstances (Case study: earthquake disaster in Tehran). J Ind Syst Eng. 2016;9(Special Issue on Supply Chain):5172.Google Scholar
Fereiduni, M, Shahanaghi, K. A robust optimization model for blood supply chain in emergency situations. Int J Ind Eng Comput. 2016;7(4):535554. doi:10.5267/j.ijiec.2016.5.002Google Scholar
Habibi-Kouchaksaraei, M, Paydar, MM, Asadi-Gangraj, E. Designing a bi-objective multi-echelon robust blood supply chain in a disaster. Appl Math Model. 2018;55:583599. doi:10.1016/j.apm.2017.11.004CrossRefGoogle Scholar
Heydari, J, Sabbaghnia, A, Razmi, J. A dynamic bi-objective model for after disaster blood supply chain network design; a robust possibilistic programming approach. J Ind Syst Eng. 2018;11(Special Issue: 14th International Industrial Engineering Conference):1628.Google Scholar
Samani, MR, Torabi, SA, Hosseini-Motlagh, SM. Integrated blood supply chain planning for disaster relief. Int J Disaster Risk Reduct. 2018;27:168188. doi:10.1016/j.ijdrr.2017.10.005CrossRefGoogle Scholar
Ma, ZJ, Wang, KM, Dai, Y. An emergency blood allocation approach considering blood group compatibility in disaster relief operations. Int J Disaster Risk Sci. 2019;10(1):7488. doi:10.1007/s13753-018-0212-7CrossRefGoogle Scholar
Rahmani, D. Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions. Ann Oper Res. 2019;283(1):613641. doi:10.1007/s10479-018-2960-6CrossRefGoogle Scholar
Cheraghi, S, Hosseini-Motlagh, SM. Responsive and reliable injured-oriented blood supply chain for disaster relief: a real case study. Ann Oper Res. 2020;291(1):129167. doi:10.1007/s10479-018-3050-5CrossRefGoogle Scholar
Khalilpourazari, S, Soltanzadeh, S, Weber, GW, et al. Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study. Ann Oper Res. 2020;289(1):123152. doi:10.1007/s10479-019-03437-2CrossRefGoogle Scholar
Dempster, AP. Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat. 1967;38:325339. doi:10.1214/aoms/1177698950CrossRefGoogle Scholar
Shafer, G. A Mathematical Theory of Evidence. Princeton University Press; 1976. doi:10.1515/9780691214696CrossRefGoogle Scholar
Yang, JB, Singh, MG. An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Trans Syst Man Cybern. 1994;24(1):18. doi:10.1109/21.259681CrossRefGoogle Scholar
Xu, DL, Yang, JB, Wang, YM. The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty. Eur J Oper Res. 2006;174(3):19141943. doi:10.1016/j.ejor.2005.02.064CrossRefGoogle Scholar
Yang, JB, Wang, YM, Xu, DL, et al. The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties. Eur J Oper Res. 2006;171(1):309343. doi:10.1016/j.ejor.2004.09.017CrossRefGoogle Scholar
Chin, KS, Wang, YM, Yang, JB, et al. An evidential reasoning based approach for quality function deployment under uncertainty. Expert Syst Appl. 2009;36(3):56845694. doi:10.1016/j.eswa.2008.06.104CrossRefGoogle Scholar
Özceylan, E, Paksoy, T. Fuzzy multi-objective linear programming approach for optimizing a closed-loop supply chain network. Int J Prod Res. 2013;51(8):24432461. doi:10.1080/00207543.2012.740579CrossRefGoogle Scholar
Tirkolaee, EB, Golpîra, H, Javanmardan, A, et al. Socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study. Socio Econ Plann Sci. 2022;101439. doi:10.1016/j.seps.2022.101439Google ScholarPubMed
Babaee Tirkolaee, E, Goli, A, Pahlevan, M, et al. A robust bi-objective multi-trip periodic capacitated arc routing problem for urban waste collection using a multi-objective invasive weed optimization. Waste Manag Res. 2019;37(11):10891101. doi:10.1177/0734242X19865340CrossRefGoogle ScholarPubMed
Khalilpourazari, S, Arshadi Khamseh, A. Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application. Ann Oper Res. 2019;283(1):355393. doi:10.1007/s10479-017-2588-yCrossRefGoogle Scholar