Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T19:44:20.195Z Has data issue: false hasContentIssue false

Synthesis of In0.1Ga0.9N/GaN structures grown by MOCVD and MBE for high speed optoelectronics

Published online by Cambridge University Press:  07 June 2016

Bandar Alshehri*
Affiliation:
Institute of Electronics, Microelectronics & Nanotechnology, Optoelectronics Group (IEMN CNRS UMR 8520) Villeneuve d’ascq, France.
Karim Dogheche
Affiliation:
Institute of Electronics, Microelectronics & Nanotechnology, Optoelectronics Group (IEMN CNRS UMR 8520) Villeneuve d’ascq, France.
Sofiane Belahsene
Affiliation:
Laboratory for Photonics Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France.
Bilal Janjua
Affiliation:
Photonics Laboratory, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
Abderrahim Ramdane
Affiliation:
Laboratory for Photonics Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France.
Gilles Patriarche
Affiliation:
Laboratory for Photonics Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France.
Tien-Khee Ng
Affiliation:
Photonics Laboratory, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
Boon S-Ooi
Affiliation:
Photonics Laboratory, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
Didier Decoster
Affiliation:
Institute of Electronics, Microelectronics & Nanotechnology, Optoelectronics Group (IEMN CNRS UMR 8520) Villeneuve d’ascq, France.
Elhadj Dogheche
Affiliation:
Institute of Electronics, Microelectronics & Nanotechnology, Optoelectronics Group (IEMN CNRS UMR 8520) Villeneuve d’ascq, France.
Get access

Abstract

In this work, we report a comparative investigation of InxGa1-xN (SL) and InxGa1-xN/GaN (MQW) structures with an indium content equivalent to x=10%. Both structures are grown on (0001) sapphire substrates using MOCVD and MBE growth techniques. Optical properties are evaluated for samples using PL characteristics. Critical differences between the resulting epitaxy are observed. Microstructures have been assessed in terms of crystalline quality, density of dislocations and surface morphology. We have focused our study towards the fabrication of vertical PIN photodiodes. The technological process has been optimized as a function of the material structure. From the optical and electrical characteristics, this study demonstrates the benefit of InGaN/GaN MQW grown by MOCVD in comparison with MBE for high speed optoelectronic applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gačević, Ž., Gómez, V. J., Lepetit, N. G., Soto Rodríguez, P. E. D., Bengoechea, A., Fernández-Garrido, S., Nötzel, R., Calleja, E., “A comprehensive diagram to grow (0001) InGaN alloys by molecular beam epitaxy,” J. Cryst. Growth, vol. 364, pp. 123127, 2013.CrossRefGoogle Scholar
Razeghi, M., Bayram, C., Vashaei, Z., Cicek, E., and McClintock, R., “III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices,” 2010 IEEE Photinic Soc. 23rd Annu. Meet., pp. 351352, 2010.CrossRefGoogle Scholar
Muñoz, E., Monroy, E., Garrido, J. a., Izpura, I., Sánchez, F. J., Sánchez-Garcı́a, M. a., Calleja, E., Beaumont, B., and Gibart, P., “Photoconductor gain mechanisms in GaN ultraviolet detectors,” Appl. Phys. Lett., vol. 71, no. 7, p. 870, 1997.CrossRefGoogle Scholar
Chen, Q., Yang, J. W., Osinsky, a., Gangopadhyay, S., Lim, B., Anwar, M. Z., Asif Khan, M., Kuksenkov, D., and Temkin, H., “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Appl. Phys. Lett., vol. 70, no. 17, p. 2277, 1997.CrossRefGoogle Scholar
Mishra, Pawan, Janjua, Bilal, Khee Ng, Tien, Shen, Chao, Salhi, Abdelmajid, Alyamani, Ahmed Y., El-Desouki, M. M., and Ooi, B. S., “Achieving Uniform Carriers Distribution in MBE Grown Compositionally Graded InGaN Multiple-Quantum-Well LEDs”, IEEE Photonics Journal, 7(3), article number 2300209, (2015).CrossRefGoogle Scholar
Farrell, R. M., Neufeld, C. J., Cruz, S. C., Lang, J. R., Iza, M., Keller, S., Nakamura, S., Denbaars, S. P., Mishra, U. K., and Speck, J. S., “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett., vol. 98, no. 20, pp. 20112014, 2011.CrossRefGoogle Scholar
Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, no. 5, p. 353, 1986.CrossRefGoogle Scholar
Nakamura, S., “GaN Growth Using GaN Buffer Layer,” Jpn. J. Appl. Phys., vol. 30, no. Part 2, No. 10A, pp. L1705L1707, 1991.CrossRefGoogle Scholar
Manasevit, H. M., “The use of metalorgarnics in the preparation of semiconductor materials: growth on insulating substrates,” J. Cryst. Growth, vol. 13–14, pp. 306314, 1972.CrossRefGoogle Scholar
Akasaki, I. and Hayashi, I., “Research on blue emitting devices,” Ind. Sci. Technol, vol. 17, p. 4852, 1976.Google Scholar
Alshehri, B., Lee, S.-M., Kang, J.-H., Gong, S.-H., Ryu, S.-W., Cho, Y.-H., and Dogheche, E., “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett., vol. 105, no. 5, p. 051906, Aug. 2014.CrossRefGoogle Scholar
Shul, R., Willison, C., Bridges, M., Han, J., Lee, J., Pearton, S., Abernathy, C., MacKenzie, J., and Donovan, S., “High-density plasma etch selectivity for the III–V nitrides,” Solid-State Electronics, vol. 42. pp. 22692276, 1998.CrossRefGoogle Scholar
Foresi, J. S. and Moustakas, T. D., “Metal contacts to gallium nitride,” Appl. Phys. Lett., vol. 62, pp. 28592861, 1993.CrossRefGoogle Scholar
Chen, Z. Z., Qin, Z. X., Hu, X. D., Yu, T. J., Yang, Z. J., Tong, Y. Z., Ding, X. M., and Zhang, G. Y., “Study of photoluminescence and absorption in phase-separation InGaN films,” Phys. B Condens. Matter, vol. 344, no. 1–4, pp. 292296, Feb. 2004.CrossRefGoogle Scholar
Gokarna, A., Gauthier-Brun, A., Liu, W., Androussi, Y., Dumont, E., Dogheche, E., Teng, J. H., Chua, S. J., and Decoster, D., “Optical and microstructural properties versus indium content in InxGa1−xN films grown by metal organic chemical vapor deposition,” Appl. Phys. Lett., vol. 96, no. 19, p. 191909, 2010.CrossRefGoogle Scholar
Lai, K. Y., Lin, G. J., Lai, Y.-L., Chen, Y. F., and He, J. H., “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett., vol. 96, no. 8, p. 081103, 2010.CrossRefGoogle Scholar
Belahsene, S., Patriarche, G., Troadec, D., Sundaram, S., Ougazzaden, A., Martinez, A., and Ramdane, A., “Microstructural and electrical investigation of Pd/Au ohmic contact on p-GaN,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., vol. 33, no. 1, p. 010603, Jan. 2015.Google Scholar
Zheng, X. H., Chen, H., Yan, Z. B., Han, Y. J., Yu, H. B., Li, D. S., Huang, Q., and Zhou, J. M., “Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution X-ray diffraction,” J. Cryst. Growth, vol. 255, no. 1–2, pp. 6367, Jul. 2003.CrossRefGoogle Scholar
Hui Youn, Shin, “Microstructural Characterization of In-platelets with High In Composition in InGaN/GaN Multiple Quantum Wells,” J. Korean Phys. Soc., vol. 56, no. 3, p. 918, 2010.Google Scholar
Johnson, M.A., Yu, Z., Brown, J.D., Koeck, F., El Masry, N., Kong, H.S., Edmond, J., Cook, J.W., Schetzina, J.F., MRS 2002 Google Scholar
Chaldyshev, V. V., Bolshakov, A. S., Zavarin, E. E., Sakharov, A. V., Lundin, W. V., Tsatsulnikov, A. F., Yagovkina, M. A., Kim, T., and Park, Y., “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett., vol. 99, no. 25, p. 251103, 2011.CrossRefGoogle Scholar
Neufeld, C. J., Toledo, N. G., Cruz, S. C., Iza, M., DenBaars, S. P., and Mishra, U. K., “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett., vol. 93, no. 14, pp. 1417, 2008.CrossRefGoogle Scholar