This special issue is devoted to some aspects of the new ideas that recently arose from the work of Thomas Ehrhard on the models of linear logic (LL) and of the λ-calculus. In some sense, the very origin of these ideas dates back to the introduction of LL in the 80s by Jean-Yves Girard. An obvious remark is that LL yielded a first logical quantitative account of the use of resources: the logical distinction between linear and non-linear formulas through the introduction of the exponential connectives. As explicitly mentioned by Girard in his first paper on the subject, the quantitative approach, to which he refers as ‘quantitative semantics,’ had a crucial influence on the birth of LL. And even though, at that time, it was given up for lack of ‘any logical justification’ (quoting the author), it contained rough versions of many concepts that were better understood, precisely introduced and developed much later, like differentiation and Taylor expansion for proofs. Around 2003, and thanks to the developments of LL and of the whole research area between logic and theoretical computer science, Ehrhard could come back to these fundamental intuitions and introduce the structure of finiteness space, allowing to reformulate this quantitative approach in a standard algebraic setting. The interpretation of LL in the category Fin of finiteness spaces and finitary relations suggested to Ehrhard and Regnier the differential extensions of LL and of the simply typed λ-calculus: Differential Linear Logic (DiLL) and the differential λ-calculus. The theory of LL proof-nets could be straightforwardly extended to DiLL, and a very natural notion of Taylor expansion of a proof-net (and of a λ-term) was introduced: an element of the Taylor expansion of the proof-net/term α is itself a (differential) proof-net/term and an approximation of α.

]]>Differential linear logic enriches linear logic with additional logical rules for the exponential connectives, dual to the usual rules of dereliction, weakening and contraction. We present a proof-net syntax for differential linear logic and a categorical axiomatization of its denotational models. We also introduce a simple categorical condition on these models under which a general antiderivative operation becomes available. Last, we briefly describe the model of sets and relations and give a more detailed account of the model of finiteness spaces and linear and continuous functions.

]]>We describe a general construction of finiteness spaces which subsumes the interpretations of all positive connectors of linear logic. We then show how to apply this construction to prove the existence of least fixpoints for particular functors in the category of finiteness spaces: These include the functors involved in a relational interpretation of lazy recursive algebraic datatypes along the lines of the coherence semantics of system T.

]]>We analyse the reduction of differential interaction nets from the point of view of so-called ‘true concurrency,’ that is, employing a non-interleaving model of parallelism. More precisely, we associate with each differential interaction net an event structure describing its reduction. We show how differential interaction nets are only able to generate confusion-free event structures, and we argue that this is a serious limitation in terms of the concurrent behaviours they may express. In fact, confusion is an extremely elementary phenomenon in concurrency (for example, it already appears in CCS with just prefixing and parallel composition) and we show how its presence is preserved by any encoding respecting the degree of distribution and the reduction semantics. We thus infer that no reasonably expressive process calculus may be satisfactorily encoded in differential interaction nets. We conclude with an analysis of one such encoding proposed by Ehrhard and Laurent, and argue that it does not contradict our claims, but rather supports them.

]]>A quantitative model of concurrent interaction is introduced. The basic objects are linear combinations of partial order relations, acted upon by a group of permutations that represents potential non-determinism in synchronisation. This algebraic structure is shown to provide faithful interpretations of finitary process algebras, for an extension of the standard notion of testing semantics, leading to a model that is both denotational (in the sense that the internal workings of processes are ignored) and non-interleaving. Constructions on algebras and their subspaces enjoy a good structure that make them (nearly) a model of differential linear logic, showing that the underlying approach to the representation of non-determinism as linear combinations is the same.

]]>The multiset-based relational model of linear logic induces a semantics of the untyped λ-calculus, which corresponds with a non-idempotent intersection type system, System R. We prove that, in System R, the size of type derivations and the size of types are closely related to the execution time of λ-terms in a particular environment machine, Krivine's machine.

]]>In previous works, by importing ideas from game semantics (notably Faggian–Maurel–Curien's ludics nets), we defined a new class of multiplicative/additive polarized proof nets, called J-proof nets. The distinctive feature of J-proof nets with respect to other proof net syntaxes, is the possibility of representing proof nets which are partially sequentialized, by using jumps (that is, untyped extra edges) as sequentiality constraints. Starting from this result, in the present work, we extend J-proof nets to the multiplicative/exponential fragment, in order to take into account structural rules: More precisely, we replace the familiar linear logic notion of exponential box with a less restricting one (called cone) defined by means of jumps. As a consequence, we get a syntax for polarized nets where, instead of a structure of boxes nested one into the other, we have one of cones which can be partially overlapping. Moreover, we define cut-elimination for exponential J-proof nets, proving, by a variant of Gandy's method, that even in case of ‘superposed’ cones, reduction enjoys confluence and strong normalization.

]]>The exponential modality of linear logic associates to every formula A a commutative comonoid !A which can be duplicated in the course of reasoning. Here, we explain how to compute the free commutative comonoid !A as a sequential limit of equalizers in any symmetric monoidal category where this sequential limit exists and commutes with the tensor product. We apply this general recipe to a series of models of linear logic, typically based on coherence spaces, Conway games and finiteness spaces. This algebraic description unifies for the first time a number of apparently different constructions of the exponential modality in spaces and games. It also sheds light on the duplication policy of linear logic, and its interaction with classical duality and double negation completion.

]]>