For a prime ℓ and an abelian variety A over a global field K, the ℓ-parity conjecture predicts that, in accordance with the ideas of Birch and Swinnerton–Dyer, the ℤℓ-corank of the ℓ∞-Selmer group and the analytic rank agree modulo 2. Assuming that char K > 0, we prove that the ℓ-parity conjecture holds for the base change of A to the constant quadratic extension if ℓ is odd, coprime to char K, and does not divide the degree of every polarisation of A. The techniques involved in the proof include the étale cohomological interpretation of Selmer groups, the Grothendieck–Ogg–Shafarevich formula and the study of the behavior of local root numbers in unramified extensions.

]]>We construct graph selectors for compact exact Lagrangians in the cotangent bundle of an orientable, closed manifold. The construction combines Lagrangian spectral invariants, developed by Oh, and results, by Abouzaid, about the Fukaya category of a cotangent bundle. We also introduce the notion of Lipschitz-exact Lagrangians and prove that these admit an appropriate generalisation of graph selector. We then, following Bernard–Oliveira dos Santos, use these results to give a new characterisation of the Aubry and Mañé sets of a Tonelli Hamiltonian and to generalise a result of Arnaud on Lagrangians invariant under the flow of such Hamiltonians.

]]>Various types of local zeta functions studied in asymptotic group theory admit two natural operations: (1) change the prime and (2) perform local base extensions. Often, the effects of both of the preceding operations can be expressed simultaneously in terms of a single formula, a statement made precise using what we call local maps of Denef type. We show that assuming the existence of such formulae, the behaviour of local zeta functions under variation of the prime in a set of density 1 in fact completely determines these functions for almost all primes and, moreover, it also determines their behaviour under local base extensions. We discuss applications to topological zeta functions, functional equations, and questions of uniformity.

]]>We associate to a group G a series that generalises the cogrowth series of G and is related to a random walk on G. We show that the series is rational if and only if G is finite, generalizing a result of Kouksov [Kou]. We show that when G is finite, the series determines G. There are naturally occurring ideals and varieties that are acted on by Aut(G). We study these and generalize this to the context of S-rings over finite groups. There is an associated representation of Aut(G) and we characterize when this is irreducible.

]]>For any metric space X, the predual of Lip(X) is unique. If X has finite diameter or is complete and convex—in particular, if it is a Banach space—then the predual of Lip0(X) is unique.

]]>We obtained a “decomposition scheme” of C*-algebras. We show that the classes of discrete C*-algebras (as defined by Peligard and Zsidó), type II C*-algebras and type III C*-algebras (both defined by Cuntz and Pedersen) form a good framework to “classify” C*-algebras. In particular, we found that these classes are closed under strong Morita equivalence, hereditary C*-subalgebras as well as taking “essential extension” and “normal quotient”. Furthermore, there exist the largest discrete finite ideal Ad,1, the largest discrete essentially infinite ideal Ad,∞, the largest type II finite ideal AII,1, the largest type II essentially infinite ideal AII,∞, and the largest type III ideal AIII of any C*-algebra A such that Ad,1 + Ad,∞ + AII,1 + AII,∞ + AIII is an essential ideal of A. This “decomposition” extends the corresponding one for W*-algebras.

We also give a closer look at C*-algebras with Hausdorff primitive ideal spaces, AW*-algebras as well as local multiplier algebras of C*-algebras. We find that these algebras can be decomposed into continuous fields of prime C*-algebras over a locally compact Hausdorff space, with each fiber being non-zero and of one of the five types mentioned above.

]]>For a C*-algebra A and a set X we give a Stinespring-type characterisation of the completely positive Schur A-multipliers on κ(ℓ2(X)) ⊗ A. We then relate them to completely positive Herz–Schur multipliers on C*-algebraic crossed products of the form A ⋊α,rG, with G a discrete group, whose various versions were considered earlier by Anantharaman-Delaroche, Bédos and Conti, and Dong and Ruan. The latter maps are shown to implement approximation properties, such as nuclearity or the Haagerup property, for A ⋊α,rG.

]]>Let b ⩾ 2 be an integer. Among other results we establish, in a quantitative form, that any sufficiently large integer which is not a multiple of b cannot simultaneously be divisible only by very small primes and have very few nonzero digits in its representation in base b.

]]>We show that for any integers ti ⩾ 0 (i = 1, 2) and n ⩾ 2, there is a knot K in the 3-sphere with an n-tangle decomposition K = T1∪T2 such that tnl(Ti) = ti (i = 1, 2) and that tnl(K) = tnl(T1) + tnl(T2) + 2n − 1, where tnl(⋅) is the tunnel number. This contains an affirmative answer to an unsolved problem asked by Morimoto.

]]>We give new, short proofs of the presentations for the partition monoid and its singular ideal originally given in the author's 2011 papers in Journal of Algebra and International Journal of Algebra and Computation.

]]>A manifold which admits a reducible genus-2 Heegaard splitting is one of the 3-sphere, S2 × S1, lens spaces or their connected sums. For each of those splittings, the complex of Haken spheres is defined. When the manifold is the 3-sphere, S2 × S1 or a connected sum whose summands are lens spaces or S2 × S1, the combinatorial structure of the complex has been studied by several authors. In particular, it was shown that those complexes are all contractible. In this work, we study the remaining cases, that is, when the manifolds are lens spaces. We give a precise description of each of the complexes for the genus-2 Heegaard splittings of lens spaces. A remarkable fact is that the complexes for most lens spaces are not contractible and even not connected.

]]>