In this paper, the stability of a laminar plume due to solutal convection is addressed from experimental, numerical and theoretical points of view. A topless vertical tube containing water is put in a pressure cell filled with carbon dioxide ( ). The diffusion of at the free surface creates a thin layer of heavy fluid underneath the surface. This unstable density gradient generates a steady laminar plume which goes downward through the entire tube. A quasi-steady flow settles in the tube, filling gradually the bottom of the tube with heavy fluid. During this laminar regime, the velocity of the plume slowly decreases due to the build-up of the background density gradient. Surprisingly, despite the decrease of the Reynolds number, the laminar plume suddenly destabilises via a varicose mode into periodic pulsed puffs after an onset time which depends on the height of the tube and on the solutal Rayleigh number . This periodic regime is followed by an aperiodic regime, which lasts until the complete saturation of the solution. The observed destabilisation is explained as a result of the interplay between the feedback of the global recirculating flow and the progressive density stratification of the background fluid. The wavelength, frequency, onset time and phase velocity of the instability are explored using particle image velocimetry (PIV) measurements over two decades of Rayleigh number. The characteristics of the instability appear to be almost independent of the Bond number but strongly dependent on the solutal Rayleigh number and the aspect ratio. The phase velocity is very close to the fluid velocity of the plume before the instability, which has been predicted in various works to scale as . The wavelength is close to 4.5 times the radius of the cylinder (independent of aspect ratio, Bond number and Rayleigh number) such that the frequency scales as the phase velocity. The onset time, which is proportional to the height of the cylinder, scales as and depends on the Bond number. A simplified model inspired from Lorenz’ waterwheel is proposed to explain the destabilisation process after partial fill-up of the cylinder. Although very qualitative, the model captures the key features of the experimental observations.

]]>We present new experiments and theoretical models of the motion of relatively dense particles carried upwards by a liquid jet into a laterally confined space filled with the same liquid. The incoming jet is negatively buoyant and rises to a finite height, at which the dense mixture of liquid and particles, diluted by the entrainment of ambient liquid, falls back to the floor. The mixture further dilutes during the collapse and then spreads out across the floor and supplies an up-flow outside the fountain equal to the source volume flux plus the total entrained volume flux. The fate of the particles depends on the particle fall speed, , compared to (i) the characteristic fountain velocity in the fountain core, , (ii) the maximum upward velocity in the ambient fluid outside the fountain, , which occurs at the base of the fountain, and (iii) the upward velocity in the ambient fluid above the top of the fountain associated with the original volume flux in the liquid jet, . From this comparison we identify four regimes. (I) If , then the particles separate from the fountain and settle on the floor. (II) If , the particles are carried to the top of the fountain but then settle as the collapsing flow around the fountain spreads out across the floor; we do not observe particle suspension in the background flow. (III) For we observe a particle-laden layer outside the fountain which extends from the floor of the tank to a point below the top of the fountain. The density of this lower particle-laden layer equals the density of the collapsing fountain fluid as it passes downwards through this interface. The collapsing fluid then spreads out horizontally through the depth of this particle-laden layer, instead of continuing downwards around the rising fountain. In the lower layer, the negatively buoyant source fluid in fact rises as a negatively buoyant jet, but this transitions into a fountain above the upper interface of the particle-laden layer. The presence of the particles in the lower layer reduces the density difference between fountain and environment, leading to an increase in the fountain height. (IV) If then an ascending front of particles rises above the fountain and eventually fills the entire tank up to the level where fluid is removed from the tank. We compare the results of a series of new laboratory experiments with simple theoretical investigations for each case, and discuss the relevance of our results.

]]>The dynamic response to shear of a fluid-filled square cavity with stable temperature stratification is investigated numerically. The shear is imposed by the constant translation of the top lid, and is quantified by the associated Reynolds number. The stratification, quantified by a Richardson number, is imposed by maintaining the temperature of the top lid at a higher constant temperature than that of the bottom, and the side walls are insulating. The Navier–Stokes equations under the Boussinesq approximation are solved, using a pseudospectral approximation, over a wide range of Reynolds and Richardson numbers. Particular attention is paid to the dynamical mechanisms associated with the onset of instability of steady state solutions, and to the complex and rich dynamics occurring beyond.

]]>The Taylor–Melcher (TM) model is the standard model for describing the dynamics of poorly conducting leaky dielectric fluids under an electric field. The TM model treats the fluids as ohmic conductors, without modelling the underlying ion dynamics. On the other hand, electrodiffusion models, which have been successful in describing electrokinetic phenomena, incorporate ionic concentration dynamics. Mathematical reconciliation of the electrodiffusion picture and the TM model has been a major issue for electrohydrodynamic theory. Here, we derive the TM model from an electrodiffusion model in which we explicitly model the electrochemistry of ion dissociation. We introduce salt dissociation reaction terms in the bulk electrodiffusion equations and take the limit in which the salt dissociation is weak; the assumption of weak dissociation corresponds to the fact that the TM model describes poor conductors. Together with the assumption that the Debye length is small, we derive the TM model with or without the surface charge convection term depending upon the scaling of relevant dimensionless parameters. An important quantity that emerges is the Galvani potential (GP), the jump in voltage across the liquid–liquid interface between the two leaky dielectric media; the GP arises as a natural consequence of the interfacial boundary conditions for the ionic concentrations, and is absent under certain parametric conditions. When the GP is absent, we recover the TM model. Our analysis also reveals the structure of the Debye layer at the liquid–liquid interface, which suggests how interfacial singularities may arise under strong imposed electric fields. In the presence of a non-zero GP, our model predicts that the liquid droplet will drift under an imposed electric field, the velocity of which is computed explicitly to leading order.

]]>Aerofoils operating in a turbulent flow generate broadband noise by scattering vorticity into sound at the leading edge. Previous work has demonstrated the effectiveness by which serrations, or undulations, introduced onto the leading edge, can substantially reduce broadband leading-edge noise. All of this work has focused on sinusoidal (single-wavelength) leading-edge serration profiles. In this paper, a new leading-edge serration geometry is proposed which provides significantly greater noise reductions compared to the maximum noise reductions achievable by single-wavelength serrations of the same amplitude. This is achieved through destructive interference between different parts of the aerofoil leading edge, and therefore involves a fundamentally different noise reduction mechanism from conventional single-wavelength serrations. The new leading-edge serration profiles simply comprise the superposition of two single-wavelength components of different wavelength, amplitude and phase with the objective of forming two roots that are sufficiently close together and separated in the streamwise direction. Compact sources located at these root locations then interfere, leading to less efficient radiation than single-wavelength geometries. A detailed parametric study is performed experimentally to investigate the sensitivity of the noise reductions to the profile geometry. A simple model is proposed to explain the noise reduction mechanism for these double-wavelength serration profiles and shown to be in close agreement with the measured noise reduction spectra. The study is primarily performed on flat plates in an idealized turbulent flow. The paper concludes by introducing the double-wavelength serration on a 10 % thick aerofoil, where near-identical noise reductions are obtained compared to the flat plate.

]]>Instability evolution in a transitional hypersonic boundary layer and its effects on aerodynamic heating are investigated over a 260 mm long flared cone. Experiments are conducted in a Mach 6 wind tunnel using Rayleigh-scattering flow visualization, fast-response pressure sensors, fluorescent temperature-sensitive paint (TSP) and particle image velocimetry (PIV). Calculations are also performed based on both the parabolized stability equations (PSE) and direct numerical simulations (DNS). Four unit Reynolds numbers are studied, 5.4, 7.6, 9.7 and . It is found that there exist two peaks of surface-temperature rise along the streamwise direction of the model. The first one (denoted as HS) is at the region where the second-mode instability reaches its maximum value. The second one (denoted as HT) is at the region where the transition is completed. Increasing the unit Reynolds number promotes the second-mode dissipation but increases the strength of local aerodynamic heating at HS. Furthermore, the heat generation rates induced by the dilatation and shear processes (respectively denoted as and ) were investigated. The former item includes both the pressure work and dilatational viscous dissipation . The aerodynamic heating in HS mainly arose from the high-frequency compression and expansion of fluid accompanying the second mode. The dilatation heating, especially , was more than five times its shear counterpart. In a limited region, the underestimated was also larger than . As the second-mode waves decay downstream, the low-frequency waves continue to grow, with the consequent shear-induced heating increasing. The latter brings about a second, weaker growth of surface-temperature HT. A theoretical analysis is provided to interpret the temperature distribution resulting from the aerodynamic heating.

]]>Superspreading is a phenomenon such that a drop of a certain class of surfactant on a substrate can spread with a radius that grows linearly with time much faster than the usual capillary wetting. Its origin, in spite of many efforts, is still not fully understood. Previous modelling and simulation studies (Karapetsas et al. J. Fluid Mech., vol. 670, 2011, pp. 5–37; Theodorakis et al. Langmuir, vol. 31, 2015, pp. 2304–2309) suggest that the transfer of the interfacial surfactant molecules onto the substrate in the vicinity of the contact line plays a crucial role in superspreading. Here, we construct a detailed theory to elaborate on this idea, showing that a rational account for superspreading can be made using a purely hydrodynamic approach without involving a specific surfactant structure or sorption kinetics. Using this theory it can be shown analytically, for both insoluble and soluble surfactants, that the curious linear spreading law can be derived from a new dynamic contact line structure due to a tiny surfactant leakage from the air–liquid interface to the substrate. Such a leak not only establishes a concentrated Marangoni shearing toward the contact line at a rate much faster than the usual viscous stress singularity, but also results in a microscopic surfactant-devoid zone in the vicinity of the contact line. The strong Marangoni shearing then turns into a local capillary force in the zone, making the contact line in effect advance in a surfactant-free manner. This local Marangoni-driven capillary wetting in turn renders a constant wetting speed governed by the de Gennes–Cox–Voinov law and hence the linear spreading law. We also determine the range of surfactant concentration within which superspreading can be sustained by local surfactant leakage without being mitigated by the contact line sweeping, explaining why only limited classes of surfactants can serve as superspreaders. We further show that spreading of surfactant spreaders can exhibit either the or power law, depending on the ability of interfacial surfactant to transfer/leak to the bulk/substrate. All these findings can account for a variety of results seen in experiments (Rafai et al. Langmuir, vol. 18, 2002, pp. 10486–10488; Nikolov & Wasan, Adv. Colloid Interface Sci., vol. 222, 2015, pp. 517–529) and simulations (Karapetsas et al. 2011). Analogy to thermocapillary spreading is also made, reverberating the ubiquitous role of the Marangoni effect in enhancing dynamic wetting driven by non-uniform surface tension.

]]>The flow of an electrified liquid film down an inclined plane wall is investigated with the focus on coherent structures in the form of travelling waves on the film surface, in particular, single-hump solitary pulses and their interactions. The flow structures are analysed first using a long-wave model, which is valid in the presence of weak inertia, and second using the Stokes equations. For obtuse angles, gravity is destabilising and solitary pulses exist even in the absence of an electric field. For acute angles, spatially non-uniform solutions exist only beyond a critical value of the electric field strength; moreover, solitary-pulse solutions are present only at sufficiently high supercritical electric-field strengths. The electric field increases the amplitude of the pulses, can generate recirculation zones in the humps and alters the far-field decay of the pulse tails from exponential to algebraic with a significant impact on pulse interactions. A weak-interaction theory predicts an infinite sequence of bound-state solutions for non-electrified flow, and a finite set for electrified flow. The existence of single-hump pulse solutions and two-pulse bound states is confirmed for the Stokes equations via boundary-element computations. In addition, the electric field is shown to trigger a switch from absolute to convective instability, thereby regularising the dynamics, and this is confirmed by time-dependent simulations of the long-wave model.

]]>We report on a numerical study of the vortex structure modifications and drag reduction in a flow over a rotationally oscillating circular cylinder at a high subcritical Reynolds number, . Considered are eight forcing frequencies , , , , , , , and three forcing amplitudes , , , non-dimensionalized with , which is the natural vortex-shedding frequency without forcing, the free-stream velocity, the diameter of the cylinder. In order to perform a parametric study of a large number of cases ( in total) with affordable computational resources, the three-dimensional unsteady computations were performed using a wall-integrated (WIN) second-moment (Reynolds-stress) Reynolds-averaged Navier–Stokes (RANS) turbulence closure, verified and validated by a dynamic large-eddy simulations (LES) for selected cases ( , and , ), as well as by the earlier LES and experiments of the flow over a stagnant cylinder at the same number described in Palkin et al. (Flow Turbul. Combust., vol. 97 (4), 2016, pp. 1017–1046). The drag reduction was detected at frequencies equal to and larger than , while no reduction was observed for the cylinder subjected to oscillations with the natural frequency, even with very different values of the rotation amplitude. The maximum reduction of the drag coefficient is 88 % for the highest tested frequency and amplitude . However, a significant reduction of 78 % appears with the increase of already for and . Such a dramatic reduction in the drag coefficient is the consequence of restructuring of the vortex-shedding topology and a markedly different pressure field featured by a shrinking of the low pressure region behind the cylinder, all dictated by the rotary oscillation. Despite the need to expend energy to force cylinder oscillations, the considered drag reduction mechanism seems a feasible practical option for drag control in some applications for , since the calculated power expenditure for cylinder oscillation under realistic scenarios is several times smaller than the power saved by the drag reduction.

]]>The two-dimensional flow induced by the breaking of modulated wave trains is numerically investigated using the open source software Gerris (Popinet, J. Comput. Phys., vol. 190, 2003, pp. 572–600; J. Comput. Phys., vol. 228, 2009, pp. 5838–5866. The two-phase flow is modelled by the Navier–Stokes equations for a single fluid with variable density and viscosity, coupled with a volume-of-fluid (VOF) technique for the capturing of the interface dynamics. The breaking is induced through the Benjamin–Feir mechanism, by adding two sideband disturbances to a fundamental wave component. The evolution of the wave system is simulated starting from the initial condition until the end of the breaking process, and the role played by the initial wave steepness is investigated. As already noted in previous studies as well as in field observations, it is found that the breaking is recurrent and several breaking events are needed before the breaking process finally ceases. The down-shifting of the fundamental component to the lower sideband is made irreversible by the breaking. At the end of the breaking process the magnitude of the lower sideband component is approximately 80 % of the initial value of the fundamental one. The time histories of the energy content in water and the energy dissipation are analysed. The whole breaking process dissipates a fraction of between twenty and twenty-five per cent of the pre-breaking energy content, independently of the initial steepness. The energy contents of the different waves of the group are evaluated and it is found that after the breaking, the energy of the most energetic wave of the group decays as .

]]>The classical problem of roll-up of a two-dimensional free inviscid vortex sheet is reconsidered. The singular governing equation brings with it considerable difficulty in terms of actual calculation of the sheet dynamics. Here, the sheet is discretized into segments that maintain it as a continuous object with curvature. A model for the self-induced velocity of a finite segment is derived based on the physical consideration that the velocity remain bounded. This allows direct integration through the singularity of the Birkhoff–Rott equation. The self-induced velocity of the segments represents the explicit inclusion of stretching of the sheet and thus vorticity transport. The method is applied to two benchmark cases. The first is a finite vortex sheet with an elliptical circulation distribution. It is found that the self-induced velocity is most relevant in regions where the curvature and the sheet strength or its gradient are large. The second is the Kelvin–Helmholtz instability of an infinite vortex sheet. The critical time at which the sheet forms a singularity in curvature is accurately predicted. As observed by others, the vortex sheet strength forms a finite-valued cusp at this time. Here, it is shown that the cusp value rapidly increases after the critical time and is the impetus that initiates the roll-up process.

]]>We investigate the effect of constant-vorticity background shear on the properties of wavetrains in deep water. Using the methodology of Fokas (A Unified Approach to Boundary Value Problems, 2008, SIAM), we derive a higher-order nonlinear Schrödinger equation in the presence of shear and surface tension. We show that the presence of shear induces a strong coupling between the carrier wave and the mean-surface displacement. The effects of the background shear on the modulational instability of plane waves is also studied, where it is shown that shear can suppress instability, although not for all carrier wavelengths in the presence of surface tension. These results expand upon the findings of Thomas et al. (Phys. Fluids, vol. 24 (12), 2012, 127102). Using a modification of the generalized Lagrangian mean theory in Andrews & McIntyre (J. Fluid Mech., vol. 89, 1978, pp. 609–646) and approximate formulas for the velocity field in the fluid column, explicit, asymptotic approximations for the Lagrangian and Stokes drift velocities are obtained for plane-wave and Jacobi elliptic function solutions of the nonlinear Schrödinger equation. Numerical approximations to particle trajectories for these solutions are found and the Lagrangian and Stokes drift velocities corresponding to these numerical solutions corroborate the theoretical results. We show that background currents have significant effects on the mean transport properties of waves. In particular, certain combinations of background shear and carrier wave frequency lead to the disappearance of mean-surface mass transport. These results provide a possible explanation for the measurements reported in Smith (J. Phys. Oceanogr., vol. 36, 2006, pp. 1381–1402). Our results also provide further evidence of the viability of the modification of the Stokes drift velocity beyond the standard monochromatic approximation, such as recently proposed in Breivik et al. (J. Phys. Oceanogr., vol. 44, 2014, pp. 2433–2445) in order to obtain a closer match to a range of complex ocean wave spectra.

]]>It has been shown experimentally that dynamic roughness elements – small bumps embedded within a boundary layer, oscillating at a fixed frequency – are able to increase the angle of attack at which a laminar boundary layer will separate from the leading edge of an airfoil (Grager et al., in 6th AIAA Flow Control Conference, 2012, pp. 25–28). In this paper, we attempt to verify that such an increase is possible by considering a two-dimensional dynamic roughness element in the context of marginal separation theory, and suggest the mechanisms through which any increase may come about. We will show that a dynamic roughness element can increase the value of as compared to the clean airfoil case; represents, mathematically, the critical value of the parameter below which a solution exists in the governing equations and, physically, the maximum angle of attack possible below which a laminar boundary layer will remain predominantly attached to the surface. Furthermore, we find that the dynamic roughness element impacts on the perturbation pressure gradient in two possible ways: either by decreasing the magnitude of the adverse pressure peak or by increasing the streamwise extent in which favourable pressure perturbations exist. Finally, we discover that the marginal separation bubble does not necessarily have to exist at in the time-averaged flow and that full breakaway separation can therefore occur as a result of the bursting of transient bubbles existing within the length scale of marginal separation theory.

]]>We present wall-resolved large-eddy simulation (LES) of flow with free-stream velocity over a cylinder of diameter rotating at constant angular velocity , with the focus on the lift crisis, which takes place at relatively high Reynolds number , where is the kinematic viscosity of the fluid. Two sets of LES are performed within the ( , )-plane with the dimensionless cylinder rotation speed. One set, at , is used as a reference flow and does not exhibit a lift crisis. Our main LES varies in at fixed . For in the range we find a lift crisis. This range is in agreement with experiment although the LES shows a deeper local minimum in the lift coefficient than the measured value. Diagnostics that include instantaneous surface portraits of the surface skin-friction vector field , spanwise-averaged flow-streamline plots, and a statistical analysis of local, near-surface flow reversal show that, on the leeward-bottom cylinder surface, the flow experiences large-scale reorganization as increases through the lift crisis. At the primary-flow features comprise a shear layer separating from that side of the cylinder that moves with the free stream and a pattern of oscillatory but largely attached flow zones surrounded by scattered patches of local flow separation/reattachment on the lee and underside of the cylinder surface. Large-scale, unsteady vortex shedding is observed. At the flow has transitioned to a more ordered state where the small-scale separation/reattachment cells concentrate into a relatively narrow zone with largely attached flow elsewhere. This induces a low-pressure region which produces a sudden decrease in lift and hence the lift crisis. Through this process, the boundary layer does not show classical turbulence behaviour. As is further increased at constant , the localized separation zone dissipates with corresponding attached flow on most of the cylinder surface. The lift coefficient then resumes its increasing trend. A logarithmic region is found within the boundary layer at .

]]>Very low Reynolds number propulsion is a topic of enduring interest due to its importance in biological systems such as sperm migration in the female reproductive tract. Motivated by the fibrous nature of cervical mucus, several recent studies have considered the effect of anisotropic rheology; these studies have generally employed the classical swimming sheet model of G. I. Taylor. The models of Cupples et al. (J. Fluid Mech. vol. 812, 2017, pp. 501–524) and Shi & Powers (Phys. Rev. Fluids vol. 2, 2017, 123102) consider related problems which in a common limit (passive, slightly anisotropic) make different predictions regarding how swimming speed depends on alignment angle. In the present paper we find that this discrepancy is due to missing terms in the analysis of Cupples et al., and that when these terms are correctly included, the models agree in their common limit. We further explore the predictions of the corrected model for both passive and active cases; it is found that for certain combinations of alignment angle and activity parameter, propulsion is halted; in other cases the small amplitude asymptotic expansion is no longer valid, motivating future numerical study.

]]>Slender-body theory is utilized to derive an asymptotic approximation to the hydrodynamic drag on an axisymmetric particle that is held fixed in an otherwise uniform stream of an incompressible Newtonian fluid at moderate Reynolds number. The Reynolds number, , is based on the length of the particle. The axis of rotational symmetry of the particle is collinear with the uniform stream. The drag is expressed as a series in powers of , where is the small ratio of the characteristic width to length of the particle; the series is asymptotic for . The drag is calculated through terms of , thereby extending the work of Khayat & Cox (J. Fluid Mech., vol. 209, 1989, pp. 435–462) who determined the drag through . The calculation of the term is accomplished via the generalized reciprocal theorem (Lovalenti & Brady, J. Fluid Mech., vol. 256, 1993, pp. 561–605). The first dependence of the inertial contribution to the drag on the cross-sectional profile of the particle is at . Notably, the drag is insensitive to the direction of travel at this order. The asymptotic results are compared to a numerical solution of the Navier–Stokes equations for the case of a prolate spheroid. Good agreement between the two is observed at moderately small values of , which is surprising given the logarithmic error associated with the asymptotic expansion.

]]>Steady self-similar solutions to the supersonic flow of Bethe–Zel’dovich–Thompson fluids past compressive and rarefactive ramps are derived. Inviscid, non-heat-conducting, non-reacting and single-phase vapour flow is assumed. For convex isentropes and shock adiabats in the pressure–specific volume plane (classical gas dynamic regime), the well-known oblique shock and centred Prandtl–Meyer fan occur at a compressive and rarefactive ramp, respectively. For non-convex isentropes and shock adiabats (non-classical gas dynamic regime), four additional wave configurations may possibly occur; these are composite waves in which a Prandtl–Meyer fan is adjacent up to two oblique shock waves. The steady two-dimensional counterparts of the wave curves defined for the one-dimensional Riemann problem are constructed. In the present context, such curves consist of all the possible states connected to a given initial state (namely, the uniform state upstream of the ramp/wedge) by means of a steady self-similar solution. In addition to the classical case, as many as six non-classical wave-curve configurations are singled out. Moreover, the necessary conditions leading to each type of wave curves are analysed and a map of the upstream states leading to each configuration is determined.

]]>Modal decomposition techniques are used to analyse the wake field past a marine propeller achieved by previous numerical simulations (Muscari et al. Comput. Fluids, vol. 73, 2013, pp. 65–79). In particular, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are used to identify the most energetic modes and those that play a dominant role in the inception of the destabilization mechanisms. Two different operating conditions, representative of light and high loading conditions, are considered. The analysis shows a strong dependence of temporal and spatial scales of the process on the propeller loading and correlates the spatial shape of the modes and the temporal scales with the evolution and destabilization mechanisms of the wake past the propeller. At light loading condition, due to the stable evolution of the wake, both POD and DMD describe the flow field by the non-interacting evolution of the tip and hub vortex. The flow is mainly associated with the ordered convection of the tip vortex and the corresponding dominant modes, identified by both decompositions, are characterized by spatial wavelengths and frequencies related to the blade passing frequency and its multiples, whereas the dynamic of the hub vortex has a negligible contribution. At high loading condition, POD and DMD identify a marked separation of the flow field close to the propeller and in the far field, as a consequence of wake breakdown. The tonal modes are prevalent only near to the propeller, where the flow is stable; on the contrary, in the transition region a number of spatial and temporal scales appear. In particular, the phenomenon of destabilization of the wake, originated by the coupling of consecutive tip vortices, and the mechanisms of hub–tip vortex interaction and wake meandering are identified by both POD and DMD.

]]>Hydraulic fracturing is a widely used method for well stimulation to enhance hydrocarbon recovery. Permeability, or fluid conductivity, of the hydraulic fracture is a key parameter to determine the fluid production rate, and is principally conditioned by fracture geometry and the distribution of the encased proppant. A numerical model is developed to describe proppant transport within a propagating blade-shaped fracture towards defining the fracture conductivity and reservoir production after fracture closure. Fracture propagation is formulated based on the PKN-formalism coupled with advective transport of an equivalent slurry representing a proppant-laden fluid. Empirical constitutive relations are incorporated to define rheology of the slurry, proppant transport with bulk slurry flow, proppant gravitational settling, and finally the transition from Poiseuille (fracture) flow to Darcy (proppant pack) flow. At the maximum extent of the fluid-driven fracture, as driving pressure is released, a fracture closure model is employed to follow the evolution of fracture conductivity with the decreasing fluid pressure. This model is capable of accommodating the mechanical response of the proppant pack, fracture closure of potentially contacting rough surfaces, proppant embedment into fracture walls, and most importantly flexural displacement of the unsupported spans of the fracture. Results show that reduced fluid viscosity increases the length of the resulting fracture, while rapid leak-off decreases it, with both characteristics minimizing fracture width over converse conditions. Proppant density and size do not significantly influence fracture propagation. Proppant settling ensues throughout fracture advance, and is accelerated by a lower viscosity fluid or greater proppant density or size, resulting in accumulation of a proppant bed at the fracture base. ‘Screen-out’ of proppant at the fracture tip can occur where the fracture aperture is only several times the diameter of the individual proppant particles. After fracture closure, proppant packs comprising larger particles exhibit higher conductivity. More importantly, high-conductivity flow channels are necessarily formed around proppant banks due to the flexural displacement of the fracture walls, which offer preferential flow pathways and significantly influence the distribution of fluid transport. Higher compacting stresses are observed around the edge of proppant banks, resulting in greater depths of proppant embedment into the fracture walls and/or an increased potential for proppant crushing.

]]>We present a method for calculating the hydrodynamic interactions between particles in the kinetic (or transition regime), characterized by non-negligible particle Knudsen numbers. Such particles are often present in aerosol systems. The method is based on our extended Kirkwood–Riseman theory (Corson et al., Phys. Rev. E, vol. 95 (1), 2017c, 013103), which accounts for interactions between spheres using the velocity field around a translating sphere as a function of Knudsen number. Results for the two-sphere problem at small Knudsen numbers are in good agreement with those obtained using Felderhof’s interaction actions for mixed slip-stick boundary conditions, which are accurate to order (Felderhof, Physica A, vol. 89 (2), 1977, pp. 373–384). The strength of the interactions decreases with increasing Knudsen number. Results for two fractal aggregates demonstrate that one can apply a point force approach for interactions between particles in the transition regime; the interaction tensor is similar to the Oseen tensor for continuum flow. Using this point force approach, we present an analysis for the settling of an unbounded cloud of particles. Our analysis shows that for sufficiently high volume fractions and cloud radii, the cloud behaves as a gas droplet in continuum flow even when the individual particles are small relative to the mean free path of the gas. The method presented here can be applied in a Brownian dynamics simulation analogous to Stokesian dynamics to study the behaviour of a dense aerosol system.

]]>Micro-organisms encounter heterogeneous viscous environments consisting of networks of obstacles embedded in a viscous fluid medium. In this paper we analyse the characteristics of swimming in a porous medium modelled by the Brinkman equation via a spherical squirmer model. The idealized geometry allows an analytical and exact solution of the flow surrounding a squirmer. The propulsion speed obtained agrees with previous results using the Lorentz reciprocal theorem. Our analysis extends these results to calculate the power dissipation and hence the swimming efficiency of the squirmer in a Brinkman medium. The analytical solution enables a systematic analysis of the structure of the flow surrounding the squirmer, which can be represented in terms of singularities in Brinkman flows. We also discuss the spatial decay of flows due to squirming motion in a Brinkman medium in comparison with the decay in a purely viscous fluid. The results lay the foundation for subsequent studies on hydrodynamic interactions, nutrient transport and uptake by micro-organisms in heterogeneous viscous environments.

]]>A common realisation of superhydrophobic surfaces is based on a periodically grooved solid substrate, with air bubbles trapped in a Cassie state within the grooves. Following Baier, Steffes & Hardt (Phys. Rev. E, vol. 82 (3), 2010, 037301) we consider the thermocapillary flow of a liquid bounded between two such surfaces, driven by a macroscopic temperature gradient. Assuming zero protrusion angle of the free menisci, the periodic geometry is described by two parameters, namely the ratio of the groove-array period to the channel depth and the gas fraction of the surface. The flow and heat transport depend upon both these parameters, as well as the Marangoni number , which quantifies the relative magnitudes of advection and conduction. This paper is concerned with the longitudinal problem, where the temperature gradient is applied along the grooves. The temperature within the highly conducting solid substrate varies linearly with distance and may be regarded as prescribed. For any non-zero value of , however, advection necessitates the formation of an excess temperature profile in the liquid domain, above and beyond that linearly varying distribution. The associated Marangoni forces, in turn, imply the formation of flow in the cross-sectional plane. The nonlinearly coupled problem governing the excess temperature and cross-sectional flow is independent of the longitudinal flow. Conversely, the latter satisfies an independent problem in the Stokes limit, and accordingly possesses the standard thermocapillary scaling. A simple transformation reveals a linkage between the longitudinal velocity in the present problem and that in the comparable pressure-driven flow. In studying the coupled problems governing the excess temperature and cross-sectional velocity components, we focus upon deep channels, where . Towards this end, we employ matched asymptotic expansions, with two -deep inner regions adjacent to the surfaces and an outer region in the remaining fluid domain. The small- limit is compatible with two possible scalings of , the first where it is and the second where it is . In the first scaling, the excess temperature in the outer region is driven by a balance between longitudinal advection and conduction perpendicular to the bounding surfaces. In the inner region, the excess temperature is governed by pure conduction; the cross-sectional flow it animates, which possesses the thermocapillary scaling, is linear in . In the second scaling, the cross-sectional velocity becomes large relative to the thermocapillary scaling; a boundary layer, of dimensionless width, is formed within the inner region. In that layer the excess temperature is governed by a dominant balance between conduction perpendicular to the surface and cross-sectional advection. The dependence upon is inherently nonlinear.

]]>Computationally modelling the two-dimensional (2-D) Poiseuille flow along and outside a straight channel with a differential viscoelastic constitutive equation, we demonstrate unstable dynamics involving bifurcations from steady flow to periodic melt fracture (sharkskin instability) and its further transition regime to a chaotic state. The numerical simulation first exposes transition from steady flow to a weak instability of periodic fluctuation, and in the middle of this periodic limit cycle (in the course of increasing flow intensity) a unique bifurcation into the second steady state is manifested. Then, a subcritical (Hopf) transition restoring this stable flow to stronger periodic instability follows, which results from the high stress along the streamlines of finite curvature with small vortices near the die lip. Its succeeding chaotic transition at higher levels of flow elasticity that induces gross melt fracture, seems to take a period doubling as well as quasiperiodic route. By simple geometrical modification of the die exit, we, as well, illustrate reduction or complete removal of sharkskin and melt fractures. The result as a matter of fact suggests convincing evidence of the possible cause of the sharkskin instability and it is thought that this fluid dynamic transition has to be taken into account for the complete description of melt fracture. The competition between nonlinear dynamic transition and other possible origins such as wall slip will ultimately determine the onset of the sharkskin and melt fractures. Therefore, the current study conceivably provides a robust methodology to portray every possible type of melt fracture if combined with an appropriate mechanism that also results in flow instability.

]]>A micro-continuum approach is proposed to simulate the dissolution of solid minerals at the pore scale in the presence of multiple fluid phases. The approach employs an extended Darcy–Brinkman–Stokes formulation that accounts for the interfacial tension between the two immiscible fluid phases and the moving contact line at the mineral surface. The simulation framework is validated using an experimental microfluidic device that provides time-lapse images of the dissolution dynamics. The set-up involves a single-calcite crystal and the subsequent generation of bubbles in the domain. The dissolution of the calcite crystal and the production of gas during the acidizing process are analysed. We then show that the production of bubbles during the injection of acid in a carbonate formation may limit the overall dissolution rate and prevent the emergence of wormholes.

]]>The effect of air viscosity on the flow around an insect wing increases as insect size decreases. For the smallest insects (wing length below 1 mm), the viscous effect is so large that lift-generation mechanisms used by their larger counterparts become ineffective. How the weight-supporting vertical force is generated is unknown. To elucidate the aerodynamic mechanisms responsible, we measure the wing kinematics of the tiny wasp Encarsia formosa (0.6 mm ) in hovering or very slow ascending flight and compute and analyse the aerodynamic forces. We find that the insects perform two unusual wing motions. One is ‘rowing’: the wings move fast downward and backward, like stroking oars. The other is the previously discovered Weis-Fogh ‘fling’. The rowing produces 70 % of the required vertical force and the Weis-Fogh ‘fling’ the other 30 %. The oaring wing mainly produces an approximately up-pointing drag, resulting in the vertical force. Because each oaring produces a starting flow, the drag is unsteady in nature and much greater than that in steady motion at the same velocities and angles of attack. Furthermore, our computation shows that if the tiny wasps employed the usual wing kinematics of the larger insects (flapping back and forth in a horizontal plane), the vertical force produced would be only of that by the real wing kinematics; i.e. they must use the special wing movements to overcome the problem of large viscous effects encountered by the commonly used flapping kinematics. We have observed for the first time very small insects using drag to support their weight and we explain how a net vertical force is generated when the drag principle is applied.

]]>Understanding and predicting the behaviour of wind turbine wake flows over hills is important for optimal design of wind-farm configurations on topography. In this study, we present an analytical modelling framework together with large-eddy simulation (LES) results to investigate turbine wakes over two-dimensional hills. The analytical model consists of two steps. In the first step, we deal with the effect of the pressure gradient on the wake evolution; and in the second step, we consider the effect of the hill-induced streamline distortion on the wake. This model enables us to obtain the wake recovery rate, the mean velocity and velocity deficit profiles and the wake trajectory in the presence of the hill. Moreover, we perform LES to test our model and also to obtain new complementary insight about such flows. Especially, we take advantage of the LES data to perform a special analysis of the behaviour of the wake on the leeward side of the hill. It is found that the mainly favourable pressure gradient on the windward side of the hill accelerates the wake recovery and the adverse pressure gradient on the leeward side decelerates it. The wake trajectory for a hill of the same height as the turbine’s hub height is found to closely follow the hill profile on the windward side, but it maintains an almost constant elevation (a horizontal line) downstream of the hilltop. The trajectory of the wake on the leeward side is also studied for a limiting case of an escarpment, and it is shown that an internal boundary layer forms on the plateau which leads to an upward displacement of the wake centre. Finally, a parametric study of the position of the turbine with respect to the hill is performed to further elucidate the effect of the hill-induced pressure gradient on the wind turbine wake recovery.

]]>This experimental study investigates the effect of imposed rotary oscillation on the flow-induced vibration of a sphere that is elastically mounted in the cross-flow direction, employing simultaneous displacement, force and vorticity measurements. The response is studied over a wide range of forcing parameters, including the frequency ratio and velocity ratio of the oscillatory forcing, which vary between and . The effect of another important flow parameter, the reduced velocity, , is also investigated by varying it in small increments between , corresponding to the Reynolds number range of . It has been found that when the forcing frequency of the imposed rotary oscillations, , is close to the natural frequency of the system, , (so that ), the sphere vibrations lock on to instead of . This inhibits the normal resonance or lock-in leading to a highly reduced vibration response amplitude. This phenomenon has been termed ‘rotary lock-on’, and occurs for only a narrow range of in the vicinity of . When rotary lock-on occurs, the phase difference between the total transverse force coefficient and the sphere displacement, , jumps from (in phase) to (out of phase). A corresponding dip in the total transverse force coefficient is also observed. Outside the lock-on boundaries, a highly modulated amplitude response is observed. Higher velocity ratios ( ) are more effective in reducing the vibration response of a sphere to much lower values. The mode I sphere vortex-induced vibration (VIV) response is found to resist suppression, requiring very high velocity ratios ( ) to significantly suppress vibrations for the entire range of tested. On the other hand, mode II and mode III are suppressed for . The width of the lock-on region increases with an increase in . Interestingly, a reduction of VIV is also observed in non-lock-on regions for high and values. For a fixed , when is progressively increased, the response of the sphere is very rich, exhibiting characteristically different vibration responses for different values. The phase difference between the imposed rotary oscillation and the sphere displacement is found to be crucial in determining the response. For selected values, the vibration amplitude increases monotonically with an increase in flow velocity, reaching magnitudes much higher than the peak VIV response for a non-rotating sphere. For these cases, the vibrations are always locked to the forcing frequency, and there is a linear decrease in . Such vibrations have been termed ‘rotary-induced vibrations’. The wake measurements in the cross-plane downstream of the sphere position reveal that the sphere wake consists of vortex loops, similar to the wake of a sphere without any imposed rotation; however, there is a change in the timing of vortex formation. On the other hand, for high values, there is a reduction in the streamwise vorticity, presumably leading to a decreased total transverse force acting on the sphere and resulting in a reduced response.

]]>Previously, we proposed a novel mechanism to produce a nonlinear thermokinetic phenomenon (NTKP) around a metal cylinder in an electrolyte on the basis of analytical discussion. In this study, by using a non-steady direct multi-physics simulation technique based on the Stokes equation coupled with the electroosmotic equation that considers normal diffusion, electrophoresis and thermal diffusion, we directly verify the NTKP and show that the original driving force is the excess ions pressed on the particle by the thermokinetic force and that the NTKP vortex flow around the particle is generated by the interaction between the excess ion and the electric field that is made by the excess ions and/or the Seebeck electric field due to the blocking boundary condition on the wall. Namely, two types of NTKP exist and they are explained in a self-consistent manner by our new theory. In addition, through the discussion of a dielectric particle, we show that the NTKP is a general phenomenon that can be found in both metal and dielectric particles. We believe that our findings provide a new unified viewpoint to understand complex thermokinetic phenomena near metal and dielectric particles.

]]>The deformation of elementary fluid volumes by velocity gradients is a key process for scalar mixing, chemical reactions and biological processes in flows. Whilst fluid deformation in unsteady, turbulent flow has gained much attention over the past half-century, deformation in steady random flows with complex structure – such as flow through heterogeneous porous media – has received significantly less attention. In contrast to turbulent flow, the steady nature of these flows constrains fluid deformation to be anisotropic with respect to the fluid velocity, with significant implications for e.g. longitudinal and transverse mixing and dispersion. In this study we derive an ab initio coupled continuous-time random walk (CTRW) model of fluid deformation in random steady three-dimensional flow that is based upon a streamline coordinate transform which renders the velocity gradient and fluid deformation tensors upper triangular. We apply this coupled CTRW model to several model flows and find that these exhibit a remarkably simple deformation structure in the streamline coordinate frame, facilitating solution of the stochastic deformation tensor components. These results show that the evolution of longitudinal and transverse fluid deformation for chaotic flows is governed by both the Lyapunov exponent and power-law exponent of the velocity probability distribution function at small velocities, whereas algebraic deformation in non-chaotic flows arises from the intermittency of shear events following similar dynamics as that for steady two-dimensional flow.

]]>In this work, the coupled dynamics of the gap flow and the vortex-induced vibration (VIV) of a side-by-side (SBS) arrangement of two circular cylinders is numerically investigated at Reynolds numbers . The influence of VIV is incorporated by allowing one of the cylinders to vibrate freely in the transverse direction, which is termed as a vibrating side-by-side (VSBS) arrangement. A comparative three-dimensional study is performed between the stationary side-by-side (SSBS) and the VSBS arrangements to examine the characteristics of the complex coupling between the VIV and the gap flow. The results are also contrasted against the isolated configurations without any proximity and gap-flow interference. Of particular interest is to establish a relationship between the VIV, the gap flow and the near-wake instability behind bluff bodies. We find that the kinematics of the VIV regulates the streamwise vorticity concentration, which accompanies a recovery of the two-dimensional hydrodynamic response at the peak lock-in. Moreover, the near-wake instability may develop around an indeterminant two-dimensional streamline saddle point along the interfaces of a pair of imbalanced counter-signed vorticity clusters. The interaction between the imbalanced vorticity clusters and the gap-flow momentum are closely interlinked with the prominence of streamwise vortical structures. In both SSBS and VSBS arrangements, the flip-flopping frequency is significantly low for the three-dimensional flow, except at the VIV lock-in for the VSBS arrangement. While an early onset of VIV lock-in is observed for the vibrating configuration, a quasi-stable deflected gap-flow regime with stably deflected gap flow is found at the peak lock-in. The increase of the gap-flow proximity interference promotes the energy transfer and stabilizes the VIV lock-in. Finally, we employ the dynamic mode decomposition procedure to characterize the space–time evolution of the vortex wake system behind the cylinders.

]]>We investigate the onset of three-dimensional hydrothermal waves in a low-capillary-number liquid layer of arbitrary depth, bounded by a free liquid–gas interface from above and a partial slip, rigid surface from below. A selection of two- and three-dimensional hydrothermal waves, longitudinal rolls and longitudinal travelling waves, form the preferred mode of instability, which depends intricately on the magnitude of the basal slip. Partial slip is destabilizing for all modes of instability. Specifically, the minimal Marangoni number required for the onset of instability follows for each mode, where and is the slip parameter. In the limit of free slip, longitudinal travelling waves disappear in favour of longitudinal rolls. With increasing slip, it is common for two-dimensional hydrothermal waves to exchange stability in favour of longitudinal rolls and oblique hydrothermal waves. Two types of oblique hydrothermal waves appear under partial slip, which exchange stability with increasing slip. The oblique mode that is preferred under no slip persists and remains near longitudinal for small slip parameters.

]]>Squeeze flows in liquid films between a porous disk and an impermeable disk generated by the relative motion of the disks are analysed. Two configurations that differ by the arrangement of (im)permeable external surfaces that bound the porous disk (i.e. not in contact with the liquid film) are considered. Such configurations allow for bearings with tuneable load-bearing characteristics and are also encountered in joint lubrication, adhesion, printing and composite manufacturing. In the present study, flow in the porous disk is governed by Darcy’s law and flow in the liquid film is described using lubrication theory. The present analysis also allows for slip between the liquid film and porous disk. Analytical solutions of the coupled system of equations governing flow in the liquid film and the porous disk are found. Under certain conditions, somewhat unexpected flow patterns are observed in the porous disk. The load-bearing capacity for both configurations is also examined as a function of the permeability and geometry of the permeable disk.

]]>Mach reflection in steady supersonic flow with two incident shock waves is studied. The second incident shock wave is produced by an additional deflection of the wedge lower surface, at some point ensuring that the two incident shock waves would intersect at the reflecting surface in case of normal reflection. Both theory and computational fluid dynamics (CFD) are used to study the flow structure and the influence of the second incident shock wave. The overall flow configuration, in case of Mach reflection, is shown to be composed of a triple shock structure, a shock/shock interaction structure and a shock/slipline reflection structure. Similar phenomenon, triggered by a high downstream pressure, has been observed before numerically, but not studied theoretically. The second incident shock wave reflects over the slipline to deflect the slipline more towards the reflecting surface, increasing thus the Mach stem height, advancing the transition of regular reflection to Mach reflection of the first incident shock wave, and causing an inverted Mach reflection below the usual von Neumann condition. A Mach stem height model built for a weak second incident shock wave is used to study the influence of the second incident shock wave on the Mach stem height. Both theory and CFD predict a maximum of the Mach stem height at some additional wedge deflection angle.

]]>We investigate theoretically the near-wall region in elastic turbulence of a dilute polymer solution in the limit of large Weissenberg number. As has been established experimentally, elastic turbulence possesses a boundary layer where the fluid velocity field can be approximated by a steady shear flow with relatively small fluctuations on the top of it. Assuming that at the bottom of the boundary layer the dissolved polymers can be considered as passive objects, we examine analytically and numerically the statistics of the polymer conformation, which is highly non-uniform in the wall-normal direction. Next, imposing the condition that the passive regime terminates at the border of the boundary layer, we obtain an estimate for the ratio of the mean flow to the magnitude of the flow fluctuations. This ratio is determined by the polymer concentration, the radius of gyration of polymers and their length in the fully extended state. The results of our asymptotic analysis reproduce the qualitative features of elastic turbulence at finite Weissenberg numbers.

]]>We investigate perturbations that maximize the gain of disturbance energy in a two-dimensional isolated vortex and a counter-rotating vortex pair. The optimization is carried out using the method of Lagrange multipliers. For low initial energy of the perturbation ( ), the nonlinear optimal perturbation/gain is found to be the same as the linear optimal perturbation/gain. Beyond a certain threshold , the optimal perturbation/gain obtained from linear and nonlinear computations are different. There exists a range of for which the nonlinear optimal gain is higher than the linear optimal gain. For an isolated vortex, the higher value of nonlinear optimal gain is attributed to interaction among different azimuthal components, which is otherwise absent in a linearized system. Spiral dislocations are found in the nonlinear optimal perturbation at the radial location where the most dominant wavenumber changes. Long-time nonlinear evolution of linear and nonlinear optimal perturbations is studied. The evolution shows that, after the initial increment of perturbation energy, the vortex attains a quasi-steady state where the mean perturbation energy decreases on a slow time scale. The quasi-steady vortex state is non-axisymmetric and its shape depends on the initial perturbation. It is observed that the lifetime of a quasi-steady vortex state obtained using the nonlinear optimal perturbation is longer than that obtained using the linear optimal perturbation. For a counter-rotating vortex pair, the mechanism that maximizes the energy gain is found to be similar to that of the isolated vortex. Within the linear framework, the optimal perturbation for a vortex pair can be either symmetric or antisymmetric, whereas the structure of the nonlinear optimal perturbation, beyond the threshold , is always asymmetric. No quasi-steady state for a counter-rotating vortex pair is observed.

]]>Informed by large-eddy simulation (LES) data and resolvent analysis of the mean flow, we examine the structure of turbulence in jets in the subsonic, transonic and supersonic regimes. Spectral (frequency-space) proper orthogonal decomposition is used to extract energy spectra and decompose the flow into energy-ranked coherent structures. The educed structures are generally well predicted by the resolvent analysis. Over a range of low frequencies and the first few azimuthal mode numbers, these jets exhibit a low-rank response characterized by Kelvin–Helmholtz (KH) type wavepackets associated with the annular shear layer up to the end of the potential core and that are excited by forcing in the very-near-nozzle shear layer. These modes too have been experimentally observed before and predicted by quasi-parallel stability theory and other approximations – they comprise a considerable portion of the total turbulent energy. At still lower frequencies, particularly for the axisymmetric mode, and again at high frequencies for all azimuthal wavenumbers, the response is not low-rank, but consists of a family of similarly amplified modes. These modes, which are primarily active downstream of the potential core, are associated with the Orr mechanism. They occur also as subdominant modes in the range of frequencies dominated by the KH response. Our global analysis helps tie together previous observations based on local spatial stability theory, and explains why quasi-parallel predictions were successful at some frequencies and azimuthal wavenumbers, but failed at others.

]]>Streamwise–wall-normal ( – ) and streamwise–spanwise ( – ) plane measurements are carried out by planar particle image velocimetry for turbulent channel flows over anisotropic porous media at the bulk Reynolds number . Three kinds of anisotropic porous media are constructed to form the bottom wall of the channel. Their wall permeability tensor is designed to have a larger wall-normal diagonal component (wall-normal permeability) than the other components. Those porous media are constructed to have three mutually orthogonal principal axes and those principal axes are aligned with the Cartesian coordinate axes of the flow geometry. Correspondingly, the permeability tensor of each porous medium is diagonal. With the – plane data, it is found that the turbulence level well accords with the order of the streamwise diagonal component of the permeability tensor (streamwise permeability). This confirms that the turbulence strength depends on the streamwise permeability rather than the wall-normal permeability when the permeability tensor is diagonal and the wall-normal permeability is larger than the streamwise permeability. To generally characterize those phenomena including isotropic porous wall cases, modified permeability Reynolds numbers are discussed. From a quadrant analysis, it is found that the contribution from sweeps and ejections to the Reynolds shear stress near the porous media is influenced by the streamwise permeability. In the – plane data, although low- and high-speed streaks are also observed near the anisotropic porous walls, large-scale spanwise patterns appear at a larger Reynolds number. It is confirmed that they are due to the transverse waves induced by the Kelvin–Helmholtz instability. By the two-point correlation analyses of the fluctuating velocities, the spacing of the streaks and the wavelengths of the Kelvin–Helmholtz (K–H) waves are discussed. It is then confirmed that the transition point from the quasi-streak structure to the roll-cell-like structure is characterized by the wall-normal distance including the zero-plane displacement of the log-law velocity which can be characterized by the streamwise permeability. It is also confirmed that the normalized wavelengths of the K–H waves over porous media are in a similar range to that of the turbulent mixing layers irrespective of the anisotropy of the porous media.

]]>We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ‘tadpole-like’ shape with a semi-circular cap and a highly stretched tail. As the annulus is inclined, the bubble tail tends to vanish, resulting in a significant decrease of bubble length. To model the bubble evolution, the thin annulus is conceptualised as a ‘Hele-Shaw’ cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model, which achieved a close match to the experimental data. The numerical model is further used to investigate the effects of gap thickness and pipe diameter on the bubble behaviour. The mechanism for the semi-circular cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder, based on which a theoretical solution to the bubble velocity is derived. The bubble motion and cap geometry is mainly controlled by the gravitational component perpendicular to the flow direction. The bubble elongation in the horizontal annulus is caused by the buoyancy that moves the bubble to the top of the annulus. However, as the annulus is inclined, the gravitational component parallel to the flow direction becomes important, causing bubble separation at the tail and reduction in bubble length.

]]>Experimental evidence is provided to demonstrate that the upstream-travelling waves in two jets screeching in the A1 and A2 modes are not free-stream acoustic waves, but rather waves with support within the jet. Proper orthogonal decomposition is used to educe the coherent fluctuations associated with jet screech from a set of randomly sampled velocity fields. A streamwise Fourier transform is then used to isolate components with positive and negative phase speeds. The component with negative phase speed is shown, by comparison with a vortex-sheet model, to resemble the upstream-travelling jet wave first studied by Tam & Hu (J. Fluid Mech., vol. 201, 1989, pp. 447–483). It is further demonstrated that screech tones are only observed over the frequency range where this upstream-travelling wave is propagative.

]]>Designing effective control for complex three-dimensional flow fields proves to be non-trivial. Often, intuitive control strategies lead to suboptimal control. To navigate the control space, we use a linear parabolized stability analysis to guide the design of a control scheme for a trailing vortex flow field aft of a NACA0012 half-wing at an angle of attack and a chord-based Reynolds number . The stability results show that the unstable mode with the smallest growth rate (fifth wake mode) provides a pathway to excite a vortex instability, whereas the principal unstable mode does not. Inspired by this finding, we perform direct numerical simulations that excite each mode with body forces matching the shape function from the stability analysis. Relative to the uncontrolled case, the controlled flows show increased attenuation of circulation and peak streamwise vorticity, with the fifth-mode-based control set-up outperforming the principal-mode-based set-up. From these results, we conclude that a rudimentary linear stability analysis can provide key insights into the underlying physics and help engineers design effective physics-based flow control strategies.

]]>This paper studies the transition to three-dimensional flow in the wake of a cylinder immersed in a free stream, where the cylinder is externally forced to continuously rotate about its axis and to linearly oscillate in the streamwise direction. Floquet stability analysis is used to assess the stability of the nominal two-dimensional flows at a Reynolds number and rotation rate to three-dimensional perturbations, as a function of the amplitude and frequency of the linear oscillations. Two modes of instability are found, distinguished by their spatial structure, temporal behaviour and apparent mechanism. The first mode has a shorter wavelength in the spanwise direction and appears to be linked to a centrifugal instability in the layer of fluid near the rotating body. The second mode has a longer wavelength and is linked to an instability of the vortex cores in the wake that is subharmonic, leading to a period doubling. Either mode can be stable while the other is unstable, depending primarily on the frequency of the oscillation of the cylinder. This indicates that either mode can control the transition to a three-dimensional flow. The results are compared to the fully three-dimensional simulation results of a rotating cylinder elastically mounted and free to oscillate in the streamwise direction from Bourguet & Lo Jacono (J. Fluid Mech., vol. 781, 2015, pp. 127–165), and appear to be able to explain the surprising switching of the observed spanwise wavelength in that flow as a change in the dominant mode, and therefore mechanism, of instability.

]]>The nonlinear evolution of an interface between a perfect conducting liquid and a perfect dielectric gas subject to periodic electrostatic forcing is studied under the long-wave approximation. It is shown that inertial thin films become unstable to finite-wavelength Faraday modes at the onset, prior to the long-wave pillaring instability reported in the lubrication limit. It is further shown that the pillaring-mode instability is subcritical in nature, with the interface approaching either the top or the bottom wall, depending on the liquid–gas holdup. On the other hand, the Faraday modes exhibit subharmonic or harmonic oscillations that nonlinearly saturate to standing waves at low forcing amplitudes. Unlike the pillaring mode, wherein the interface approaches the wall, Faraday modes may exhibit saturated standing waves when the instability is subcritical. At higher forcing amplitudes, the interface may approach either wall, again depending on the liquid–gas holdup. It is also shown that a gravitationally unstable configuration of such thin films, under the long-wave approximation, cannot be stabilized by periodic electrostatic forcing, unlike mechanical Faraday forcing. In this case, it is observed that the interface exhibits oscillatory sliding behaviour, approaching the wall in an ‘earthworm-like’ motion.

]]>