In this paper we study a finite-fuel two-dimensional degenerate singular stochastic control problem under regime switching motivated by the optimal irreversible extraction problem of an exhaustible commodity. A company extracts a natural resource from a reserve with finite capacity and sells it in the market at a spot price that evolves according to a Brownian motion with volatility modulated by a two-state Markov chain. In this setting, the company aims at finding the extraction rule that maximizes its expected discounted cash flow, net of the costs of extraction and maintenance of the reserve. We provide expressions for both the value function and the optimal control. On the one hand, if the running cost for the maintenance of the reserve is a convex function of the reserve level, the optimal extraction rule prescribes a Skorokhod reflection of the (optimally) controlled state process at a certain state and price-dependent threshold. On the other hand, in the presence of a concave running cost function, it is optimal to instantaneously deplete the reserve at the time at which the commodity's price exceeds an endogenously determined critical level. In both cases, the threshold triggering the optimal control is given in terms of the optimal stopping boundary of an auxiliary family of perpetual optimal selling problems with regime switching.

]]>A deterministic application θ:ℝ2→ℝ2 deforms bijectively and regularly the plane and allows the construction of a deformed random field X∘θ:ℝ2→ℝ from a regular, stationary, and isotropic random field X:ℝ2→ℝ. The deformed field X∘θ is, in general, not isotropic (and not even stationary), however, we provide an explicit characterization of the deformations θ that preserve the isotropy. Further assuming that X is Gaussian, we introduce a weak form of isotropy of the field X∘θ, defined by an invariance property of the mean Euler characteristic of some of its excursion sets. We prove that deformed fields satisfying this property are strictly isotropic. In addition, we are able to identify θ, assuming that the mean Euler characteristic of excursion sets of X∘θ over some basic domain is known.

]]>Motivated by a common mathematical finance topic, we discuss the reciprocal of the exit time from a cone of planar Brownian motion which also corresponds to the exponential functional of Brownian motion in the framework of planar Brownian motion. We prove a conjecture of Vakeroudis and Yor (2012) concerning infinite divisibility properties of this random variable and present a novel simple proof of the result of DeBlassie (1987), (1988) concerning the asymptotic behavior of the distribution of the Bessel clock appearing in the skew-product representation of planar Brownian motion, as t→∞. We use the results of the windings approach in order to obtain results for quantities associated to the pricing of Asian options.

]]>In this paper we are concerned with a model in econophysics, the subfield of statistical physics that applies concepts from traditional physics to economics. Our model is an example of an interacting particle system with disorder, meaning that some of the transition rates are not identical but rather drawn from a fixed distribution. Economical agents are represented by the vertices of a connected graph and are characterized by the number of coins they possess. Agents independently spend one coin at rate one for their basic need, earn one coin at a rate chosen independently from a distribution ϕ, and exchange money at rate µ with one of their nearest neighbors, with the richest neighbor giving one coin to the other neighbor. If an agent needs to spend one coin when his/her fortune is at 0, he/she dies, i.e. the corresponding vertex is removed from the graph. Our first results focus on the two extreme cases of lack of cooperation µ=0 and perfect cooperation µ = ∞ for finite connected graphs. These results suggest that, when overall the agents earn more than they spend, cooperation is beneficial for the survival of the population, whereas when overall the agents earn less than they spend, cooperation becomes detrimental. We also study the infinite one-dimensional system. In this case, when the agents earn less than they spend on average, the density of agents that die eventually is bounded from below by a positive constant that does not depend on the initial number of coins per agent or the level of cooperation.

]]>We use the Stein‒Chen method to obtain compound Poisson approximations for the distribution of the number of subgraphs in a generalised stochastic block model which are isomorphic to some fixed graph. This model generalises the classical stochastic block model to allow for the possibility of multiple edges between vertices. We treat the case that the fixed graph is a simple graph and that it has multiple edges. The former results apply when the fixed graph is a member of the class of strictly balanced graphs and the latter results apply to a suitable generalisation of this class to graphs with multiple edges. We also consider a further generalisation of the model to pseudo-graphs, which may include self-loops as well as multiple edges, and establish a parameter regime in the multiple edge stochastic block model in which Poisson approximations are valid. The results are applied to obtain Poisson and compound Poisson approximations (in different regimes) for subgraph counts in the Poisson stochastic block model and degree corrected stochastic block model of Karrer and Newman (2011).

]]>In this paper we investigate risk-sensitive semi-Markov decision processes with a Borel state space, unbounded cost rates, and general utility functions. The performance criteria are several expected utilities of the total cost in a finite horizon. Our analysis is based on a type of finite-horizon occupation measure. We express the distribution of the finite-horizon cost in terms of the occupation measure for each policy, wherein the discount is not needed. For unconstrained and constrained problems, we establish the existence and computation of optimal policies. In particular, we develop a linear program and its dual program for the constrained problem and, moreover, establish the strong duality between the two programs. Finally, we provide two special cases of our results, one of which concerns the discrete-time model, and the other the chance-constrained problem.

]]>We consider the stationary solution Z of the Markov chain {Zn}n∈ℕ defined by Zn+1=ψn+1(Zn), where {ψn}n∈ℕ is a sequence of independent and identically distributed random Lipschitz functions. We estimate the probability of the event {Z>x} when x is large, and develop a state-dependent importance sampling estimator under a set of assumptions on ψn such that, for large x, the event {Z>x} is governed by a single large jump. Under natural conditions, we show that our estimator is strongly efficient. Special attention is paid to a class of perpetuities with heavy tails.

]]>Suppose that a mobile sensor describes a Markovian trajectory in the ambient space and at each time the sensor measures an attribute of interest, e.g. the temperature. Using only the location history of the sensor and the associated measurements, we estimate the average value of the attribute over the space. In contrast to classical probabilistic integration methods, e.g. Monte Carlo, the proposed approach does not require any knowledge of the distribution of the sensor trajectory. We establish probabilistic bounds on the convergence rates of the estimator. These rates are better than the traditional `root n'-rate, where n is the sample size, attached to other probabilistic integration methods. For finite sample sizes, we demonstrate the favorable behavior of the procedure through simulations and consider an application to the evaluation of the average temperature of oceans.

]]>One model of real-life spreading processes is that of first-passage percolation (also called the SI model) on random graphs. Social interactions often follow bursty patterns, which are usually modelled with independent and identically distributed heavy-tailed passage times on edges. On the other hand, random graphs are often locally tree-like, and spreading on trees with leaves might be very slow due to bottleneck edges with huge passage times. Here we consider the SI model with passage times following a power-law distribution ℙ(ξ>t)∼t-α with infinite mean. For any finite connected graph G with a root s, we find the largest number of vertices κ(G,s) that are infected in finite expected time, and prove that for every k≤κ(G,s), the expected time to infect k vertices is at most O(k1/α). Then we show that adding a single edge from s to a random vertex in a random tree 𝒯 typically increases κ(𝒯,s) from a bounded variable to a fraction of the size of 𝒯, thus severely accelerating the process. We examine this acceleration effect on some natural models of random graphs: critical Galton--Watson trees conditioned to be large, uniform spanning trees of the complete graph, and on the largest cluster of near-critical Erdős‒Rényi graphs. In particular, at the upper end of the critical window, the process is already much faster than exactly at criticality.

]]>We investigate the asymptotic properties of the transient queue length process Q(t)=max(Q(0)+X(t)-ct, sup0≤s≤t(X(t)-X(s)-c(t-s))), t≥0, in the Gaussian fluid queueing model, where the input process X is modeled by a centered Gaussian process with stationary increments and c>0 is the output rate. More specifically, under some mild conditions on X and Q(0)=x≥0, we derive the exact asymptotics of πx,Tu(u)=ℙ(Q(Tu)>u) as u→∞. The interplay between u and Tu leads to two qualitatively different regimes: short-time horizon when Tu is relatively small with respect to u, and moderate- or long-time horizon when Tu is asymptotically much larger than u. As a by-product, we discuss the implications for the speed of convergence to stationarity of the model studied.

]]>The Holme‒Kim random graph process is a variant of the Barabási‒Álbert scale-free graph that was designed to exhibit clustering. In this paper we show that whether the model does indeed exhibit clustering depends on how we define the clustering coefficient. In fact, we find that the local clustering coefficient typically remains positive whereas global clustering tends to 0 at a slow rate. These and other results are proven via martingale techniques, such as Freedman's concentration inequality combined with a bootstrapping argument.

]]>In a series of two papers, we investigate the large deviations and asymptotic behavior of stochastic models of brain neural networks with random interaction coefficients. In this first paper, we take into account the spatial structure of the brain and consider first the presence of interaction delays that depend on the distance between cells and then the Gaussian random interaction amplitude with a mean and variance that depend on the position of the neurons and scale as the inverse of the network size. We show that the empirical measure satisfies a large deviations principle with a good rate function reaching its minimum at a unique spatially extended probability measure. This result implies an averaged convergence of the empirical measure and a propagation of chaos. The limit is characterized through a complex non-Markovian implicit equation in which the network interaction term is replaced by a nonlocal Gaussian process with a mean and covariance that depend on the statistics of the solution over the whole neural field.

]]>We continue the analysis of large deviations for randomly connected neural networks used as models of the brain. The originality of the model relies on the fact that the directed impact of one particle onto another depends on the state of both particles, and they have random Gaussian amplitude with mean and variance scaling as the inverse of the network size. Similarly to the spatially extended case (see Cabana and Touboul (2018)), we show that under sufficient regularity assumptions, the empirical measure satisfies a large deviations principle with a good rate function achieving its minimum at a unique probability measure, implying, in particular, its convergence in both averaged and quenched cases, as well as a propagation of a chaos property (in the averaged case only). The class of model we consider notably includes a stochastic version of the Kuramoto model with random connections.

]]>