The purpose of this study is to present a subgeometric convergence formula for the stationary distribution of the finite-level M/G/1-type Markov chain when taking its infinite-level limit, where the upper boundary level goes to infinity. This study is carried out using the fundamental deviation matrix, which is a block-decomposition-friendly solution to the Poisson equation of the deviation matrix. The fundamental deviation matrix provides a difference formula for the respective stationary distributions of the finite-level chain and the corresponding infinite-level chain. The difference formula plays a crucial role in the derivation of the main result of this paper, and the main result is used, for example, to derive an asymptotic formula for the loss probability in the MAP/GI/1/N queue.

]]>We consider an SIR (susceptible infective recovered) epidemic in a closed population of size n, in which infection spreads via mixing events, comprising individuals chosen uniformly at random from the population, which occur at the points of a Poisson process. This contrasts sharply with most epidemic models, in which infection is spread purely by pairwise interaction. A sequence of epidemic processes, indexed by n, and an approximating branching process are constructed on a common probability space via embedded random walks. We show that under suitable conditions the process of infectives in the epidemic process converges almost surely to the branching process. This leads to a threshold theorem for the epidemic process, where a major outbreak is defined as one that infects at least individuals. We show further that there exists , depending on the model parameters, such that the probability that a major outbreak has size at least tends to one as .

]]>Developed sequential order statistics (DSOS) are very useful in modeling the lifetimes of systems with dependent components, where the failure of one component affects the performance of remaining surviving components. We study some stochastic comparison results for DSOS in both one-sample and two-sample scenarios. Furthermore, we study various ageing properties of DSOS. We state many useful results for generalized order statistics as well as ordinary order statistics with dependent random variables. At the end, some numerical examples are given to illustrate the proposed results.

]]>Motivated by applications to COVID dynamics, we describe a model of a branching process in a random environment whose characteristics change when crossing upper and lower thresholds. This introduces a cyclical path behavior involving periods of increase and decrease leading to supercritical and subcritical regimes. Even though the process is not Markov, we identify subsequences at random time points —specifically the values of the process at crossing times, viz. —along which the process retains the Markov structure. Under mild moment and regularity conditions, we establish that the subsequences possess a regenerative structure and prove that the limiting normal distributions of the growth rates of the process in supercritical and subcritical regimes decouple. For this reason, we establish limit theorems concerning the length of supercritical and subcritical regimes and the proportion of time the process spends in these regimes. As a byproduct of our analysis, we explicitly identify the limiting variances in terms of the functionals of the offspring distribution, threshold distribution, and environmental sequences.

]]>In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a non-Markovian random walk on : in this model, the probability that the walk moves from a point of to a given neighbor depends on the number of previous crossings of the directed edge from the initial point to the target, called the local time of the edge. Tóth and Vető found that this model exhibited very peculiar behavior, as the process formed by the local times of all the edges, evaluated at a stopping time of a certain type and suitably renormalized, converges to a deterministic process, instead of a random one as in similar models. In this work, we study the fluctuations of the local times process around its deterministic limit, about which nothing was previously known. We prove that these fluctuations converge in the Skorokhod topology, as well as in the uniform topology away from the discontinuities of the limit, but not in the most classical Skorokhod topology. We also prove the convergence of the fluctuations of the aforementioned stopping times.

]]>In this paper, we propose new Metropolis–Hastings and simulated annealing algorithms on a finite state space via modifying the energy landscape. The core idea of landscape modification rests on introducing a parameter c, such that the landscape is modified once the algorithm is above this threshold parameter to encourage exploration, while the original landscape is utilized when the algorithm is below the threshold for exploitation purposes. We illustrate the power and benefits of landscape modification by investigating its effect on the classical Curie–Weiss model with Glauber dynamics and external magnetic field in the subcritical regime. This leads to a landscape-modified mean-field equation, and with appropriate choice of c the free energy landscape can be transformed from a double-well into a single-well landscape, while the location of the global minimum is preserved on the modified landscape. Consequently, running algorithms on the modified landscape can improve the convergence to the ground state in the Curie–Weiss model. In the setting of simulated annealing, we demonstrate that landscape modification can yield improved or even subexponential mean tunnelling time between global minima in the low-temperature regime by appropriate choice of c, and we give a convergence guarantee using an improved logarithmic cooling schedule with reduced critical height. We also discuss connections between landscape modification and other acceleration techniques, such as Catoni’s energy transformation algorithm, preconditioning, importance sampling, and quantum annealing. The technique developed in this paper is not limited to simulated annealing, but is broadly applicable to any difference-based discrete optimization algorithm by a change of landscape.

]]>Graphical models with heavy-tailed factors can be used to model extremal dependence or causality between extreme events. In a Bayesian network, variables are recursively defined in terms of their parents according to a directed acyclic graph (DAG). We focus on max-linear graphical models with respect to a special type of graph, which we call a tree of transitive tournaments. The latter is a block graph combining in a tree-like structure a finite number of transitive tournaments, each of which is a DAG in which every two nodes are connected. We study the limit of the joint tails of the max-linear model conditionally on the event that a given variable exceeds a high threshold. Under a suitable condition, the limiting distribution involves the factorization into independent increments along the shortest trail between two variables, thereby imitating the behaviour of a Markov random field.

We are also interested in the identifiability of the model parameters in the case when some variables are latent and only a subvector is observed. It turns out that the parameters are identifiable under a criterion on the nodes carrying the latent variables which is easy and quick to check.

]]>Preservation of stochastic orders through the system signature has captured the attention of researchers in recent years. Signature-based comparisons have been made for the usual stochastic order, hazard rate order, and likelihood ratio orders. However, for the mean residual life (MRL) order, it has recently been proved that the preservation result does not hold true in general, but rather holds for a particular class of distributions. In this paper, we study whether or not a similar preservation result holds for the mean inactivity time (MIT) order. We prove that the MIT order is not preserved from signatures to system lifetimes with independent and identically distributed (i.i.d.) components, but holds for special classes of distributions. The relationship between these classes and the order statistics is also highlighted. Furthermore, the distribution-free comparison of the performance of coherent systems with dependent and identically distributed (d.i.d.) components is studied under the MIT ordering, using diagonal-dependent copulas and distorted distributions.

]]>This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions (QSDs) of continuous-time Markov chains on subsets of the non-negative integers. Based on the so-called flux-balance equation, we establish identities for stationary measures and QSDs, which we use to derive tail asymptotics. In particular, for continuous-time Markov chains with asymptotic power law transition rates, tail asymptotics for stationary distributions and QSDs are classified into three types using three easily computable parameters: (i) super-exponential distributions, (ii) exponential-tailed distributions, and (iii) sub-exponential distributions. Our approach to establish tail asymptotics of stationary distributions is different from the classical semimartingale approach, and we do not impose ergodicity or moment bound conditions. In particular, the results also hold for explosive Markov chains, for which multiple stationary distributions may exist. Furthermore, our results on tail asymptotics of QSDs seem new. We apply our results to biochemical reaction networks, a general single-cell stochastic gene expression model, an extended class of branching processes, and stochastic population processes with bursty reproduction, none of which are birth–death processes. Our approach, together with the identities, easily extends to discrete-time Markov chains.

]]>Inaccuracy and information measures based on cumulative residual entropy are quite useful and have received considerable attention in many fields, such as statistics, probability, and reliability theory. In particular, many authors have studied cumulative residual inaccuracy between coherent systems based on system lifetimes. In a previous paper (Bueno and Balakrishnan, Prob. Eng. Inf. Sci. 36, 2022), we discussed a cumulative residual inaccuracy measure for coherent systems at component level, that is, based on the common, stochastically dependent component lifetimes observed under a non-homogeneous Poisson process. In this paper, using a point process martingale approach, we extend this concept to a cumulative residual inaccuracy measure between non-explosive point processes and then specialize the results to Markov occurrence times. If the processes satisfy the proportional risk hazard process property, then the measure determines the Markov chain uniquely. Several examples are presented, including birth-and-death processes and pure birth process, and then the results are applied to coherent systems at component level subject to Markov failure and repair processes.

]]>