We investigate stable intersections of conformal Cantor sets and their consequences to dynamical systems. First we define this type of Cantor set and relate it to horseshoes appearing in automorphisms of . Then we study limit geometries, that is, objects related to the asymptotic shape of the Cantor sets, to obtain a criterion that guarantees stable intersection between some configurations. Finally, we show that the Buzzard construction of a Newhouse region on can be seen as a case of stable intersection of Cantor sets in our sense and give some (not optimal) estimate on how ‘thick’ those sets have to be.

]]>In this paper we focus on compacta which possess a neighbourhood basis that consists of nested solid tori . We call these sets toroidal. Making use of the classical notion of the geometric index of a curve inside a torus, we introduce the self-geometric index of a toroidal set K, which roughly captures how each torus winds inside the previous as . We then use this index to obtain some results about the realizability of toroidal sets as attractors for homeomorphisms of .

]]>In this paper we show that generic continuous Lebesgue measure-preserving circle maps have the s-limit shadowing property. In addition, we obtain that s-limit shadowing is a generic property also for continuous circle maps. In particular, this implies that classical shadowing, periodic shadowing and limit shadowing are generic in these two settings as well.

]]>This paper is part of a program to understand the parameter spaces of dynamical systems generated by meromorphic functions with finitely many singular values. We give a full description of the parameter space for a specific family based on the exponential function that has precisely two finite asymptotic values and one attracting fixed point. It represents a step beyond the previous work by Goldberg and Keen [The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift. Invent. Math.101(2) (1990), 335–372] on degree two rational functions with analogous constraints: two critical values and an attracting fixed point. What is interesting and promising for pushing the general program even further is that, despite the presence of the essential singularity, our new functions exhibit a dynamic structure as similar as one could hope to the rational case, and that the philosophy of the techniques used in the rational case could be adapted.

]]>We define a Toledo number for actions of surface groups and complex hyperbolic lattices on infinite-dimensional Hermitian symmetric spaces, which allows us to define maximal representations. When the target is not of tube type, we show that there cannot be Zariski-dense maximal representations, and whenever the existence of a boundary map can be guaranteed, the representation preserves a finite-dimensional totally geodesic subspace on which the action is maximal. In the opposite direction, we construct examples of geometrically dense maximal representation in the infinite-dimensional Hermitian symmetric space of tube type and finite rank. Our approach is based on the study of boundary maps, which we are able to construct in low ranks or under some suitable Zariski density assumption, circumventing the lack of local compactness in the infinite-dimensional setting.

]]>The ergodic properties of two uncoupled oscillators, one horizontal and one vertical, residing in a class of non-rectangular star-shaped polygons with only vertical and horizontal boundaries and impacting elastically from its boundaries are studied. We prove that the iso-energy level sets topology changes non-trivially; the flow on level sets is always conjugated to a translation flow on a translation surface, yet, for some segments of partial energies the genus of the surface is strictly greater than . When at least one of the oscillators is unharmonic, or when both are harmonic and non-resonant, we prove that for almost all partial energies, including the impacting ones, the flow on level sets is uniquely ergodic. When both oscillators are harmonic and resonant, we prove that there exist intervals of partial energies on which periodic ribbons and additional ergodic components coexist. We prove that for almost all partial energies in such segments the motion is uniquely ergodic on the part of the level set that is not occupied by the periodic ribbons. This implies that ergodic averages project to piecewise smooth weighted averages in the configuration space.

]]>We extend the concept of a Hubbard tree, well established and useful in the theory of polynomial dynamics, to the dynamics of transcendental entire functions. We show that Hubbard trees in the strict traditional sense, as invariant compact trees embedded in , do not exist even for post-singularly finite exponential maps; the difficulty lies in the existence of asymptotic values. We therefore introduce the concept of a homotopy Hubbard tree that takes care of these difficulties. Specifically for the family of exponential maps, we show that every post-singularly finite map has a homotopy Hubbard tree that is unique up to homotopy, and that post-singularly finite exponential maps can be classified in terms of homotopy Hubbard trees, using a transcendental analogue of Thurston’s topological characterization theorem of rational maps.

]]>Let be an (unbounded) countable multiset of primes (that is, every prime may appear multiple times) and let . We develop a Host–Kra structure theory for the universal characteristic factors of an ergodic G-system. More specifically, we generalize the main results of Bergelson, Tao and Ziegler [An inverse theorem for the uniformity seminorms associated with the action of . Geom. Funct. Anal.19(6) (2010), 1539–1596], who studied these factors in the special case for some fixed prime p. As an application we deduce a Khintchine-type recurrence theorem in the flavor of Bergelson, Tao and Ziegler [Multiple recurrence and convergence results associated to -actions. J. Anal. Math.127 (2015), 329–378] and Bergelson, Host and Kra [Multiple recurrence and nilsequences. Invent. Math.160(2) (2005), 261–303, with an appendix by I. Ruzsa].

]]>