We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tuberculosis (TB) remains a significant public health concern in China. Using data from the Global Burden of Disease (GBD) study 2021, we analyzed trends in age-standardized incidence rate (ASIR), prevalence rate (ASPR), mortality rate (ASMR), and disability-adjusted life years (DALYs) for TB from 1990 to 2021. Over this period, HIV-negative TB showed a marked decline in ASIR (AAPC = −2.34%, 95% CI: −2.39, −2.28) and ASMR (AAPC = −0.56%, 95% CI: −0.62, −0.59). Specifically, drug-susceptible TB (DS-TB) showed reductions in both ASIR and ASMR, while multidrug-resistant TB (MDR-TB) showed slight decreases. Conversely, extensively drug-resistant TB (XDR-TB) exhibited upward trends in both ASIR and ASMR. TB co-infected with HIV (HIV-DS-TB, HIV-MDR-TB, HIV-XDR-TB) showed increasing trends in recent years. The analysis also found an inverse correlation between ASIRs and ASMRs for HIV-negative TB and the Socio-Demographic Index (SDI). Projections from 2022 to 2035 suggest continued increases in ASIR and ASMR for XDR-TB, HIV-DS-TB, HIV-MDR-TB, and HIV-XDR-TB. The rising burden of XDR-TB and HIV-TB co-infections presents ongoing challenges for TB control in China. Targeted prevention and control strategies are urgently needed to mitigate this burden and further reduce TB-related morbidity and mortality.
We investigate the dynamics of circular self-propelled particles in channel flow, modelled as squirmers using a two-dimensional lattice Boltzmann method. The simulations explore a wide range of parameters, including channel Reynolds numbers ($\textit{Re}_c$), squirmer Reynolds numbers ($\textit{Re}_s$) and squirmer-type factors ($\beta$). For a single squirmer, four motion regimes are identified: oscillatory motion confined to one side of the channel, oscillatory crossing of the channel centreline, stabilisation at a lateral equilibrium position with the squirmer tilted and stable upstream swimming near the channel centreline. For two squirmers, interactions produce not only these four corresponding regimes but also three additional ones: continuous collisions with repeated position exchanges, progressive separation and drifting apart and, most notably, the formation of a stable wedge-like conformation (regime D). A key finding is the emergence of regime D, which predominantly occurs for weak pullers ($\beta = 1$) and at moderate to high $\textit{Re}_c$ values. Hydrodynamic interactions align the squirmers with streamline bifurcations near the channel centreline, enabling stability despite transient oscillations. Additionally, the channel blockage ratio critically affects the range of $\textit{Re}_s$ values over which this regime occurs, highlighting the influence of geometric confinement. This study extends the understanding of squirmer dynamics, revealing how hydrodynamic interactions drive collective behaviours. The findings also offer insights into the design of self-propelled particles for biomedical applications and contribute to the theoretical framework for active matter systems. Future work will investigate three-dimensional effects and the stability conditions for spherical squirmers forming stable wedge-like conformations, further generalising these results.
The investigation of truncated theta series was popularized by Andrews and Merca. In this article, we establish an explicit expression with nonnegative coefficients for the bivariate truncated Jacobi triple product series:
which can be regarded as a companion to Wang and Yee’s truncation of the triple product identity. As applications, our result confirms a conjecture of Li, Lin, and Wang and implies a family of linear inequalities for a bi-parametric partition function. We also work on another truncated triple product series arising from the work of Xia, Yee, and Zhao and derive similar nonnegativity results and linear inequalities.
Rare earth elements (REEs) preserved in speleothems have garnered increasing attention as ideal proxies for the paleoenvironmental reconstruction. However, due to their typically low contents in stalagmites, the availability of stalagmite-based REE records remains limited. Here we present high-resolution REEs alongside oxygen isotope (δ18O) records in stalagmite SX15a from Sanxing Cave, southwestern China (110.1–103.3 ka). This study demonstrates that REE records could provide useful information for the provenance and formation process of the stalagmite, due to consistent distribution pattern across different periods indicating stable provenance. More interestingly, the total REE (ΣREE) record could serve as an effective indicator to reflect local hydrological processes associated with monsoonal precipitation. During Marine Isotopic Stage (MIS) 5d, a relatively low ΣREE content is consistent with the positive SX15a δ18O and negative NGRIP δ18O, reflecting a dry-cold environment; while during MIS 5c, a generally high ΣREE content suggests a humid-warm circumstance. Furthermore, the ΣREE record captured four prominent sub-millennial fluctuations within the Greenland interstadial 24 event, implying a combined influence by the regional climate and local soil redox conditions. Our findings indicate that the stalagmite-based REE records would be a useful proxy for better understanding of past climate and environment changes.
In this study, the propagation behaviour of detonation waves in a channel filled with stratified media is analysed using a detailed chemical reaction model. Two symmetrical layers of non-reactive gas are introduced near the upper and lower walls to encapsulate a stoichiometric premixed H2–air mixture. The effects of gas temperature and molecular weight of the non-reactive layers on the detonation wave’s propagation mode and velocity are examined thoroughly. The results reveal that as the non-reactive gas temperature increases, the detonation wave front transitions from a ‘convex’ to a ‘concave’ shape, accompanied by an increase in wave velocity. Notably, the concave wave front comprises detached shocks, oblique shocks and detonation waves, with the overall wave system propagating at a velocity exceeding the theoretical Chapman–Jouguet speed, indicating the emergence of a strong detonation wave. Furthermore, when the molecular weight of non-reactive layers varies, the results qualitatively align with those obtained from temperature variations. To elucidate the formation mechanism of different detonation wave front shapes, a dimensionless parameter $\eta$ (defined as a function of the specific heat ratio and sound speed) is proposed. This parameter unifies the effects of temperature and molecular weight, confirming that the specific heat ratio and sound speed of non-reactive layers are the primary factors governing the detonation wave propagation mode. Additionally, considering the effect of mixture inhomogeneity on the detonation reaction zone, the stream tube contraction theory is proposed, successfully explaining why strong detonation waves form in stratified mixtures. Numerical results show good agreement with theoretical predictions, validating the proposed model.
Data harmonization is an emerging approach to strategically combining data from multiple independent studies, enabling addressing new research questions that are not answerable by a single contributing study. A fundamental psychometric challenge for data harmonization is to create commensurate measures for the constructs of interest across studies. In this study, we focus on a regularized explanatory multidimensional item response theory model (re-MIRT) for establishing measurement equivalence across instruments and studies, where regularization enables the detection of items that violate measurement invariance, also known as differential item functioning (DIF). Because the MIRT model is computationally demanding, we leverage the recently developed Gaussian Variational Expectation–Maximization (GVEM) algorithm to speed up the computation. In particular, the GVEM algorithm is extended to a more complicated and improved multi-group version with categorical covariates and Lasso penalty for re-MIRT, namely, the importance weighted GVEM with one additional maximization step (IW-GVEMM). This study aims to provide empirical evidence to support feasible uses of IW-GVEMM for re-MIRT DIF detection, providing a useful tool for integrative data analysis. Our results show that IW-GVEMM accurately estimates the model, detects DIF items, and finds a more reasonable number of DIF items in a real world dataset. The proposed method has been integrated into R package VEMIRT (https://map-lab-uw.github.io/VEMIRT).
This paper first discusses the relationship between Kullback–Leibler information (KL) and Fisher information in the context of multi-dimensional item response theory and is further interpreted for the two-dimensional case, from a geometric perspective. This explication should allow for a better understanding of the various item selection methods in multi-dimensional adaptive tests (MAT) which are based on these two information measures. The KL information index (KI) method is then discussed and two theorems are derived to quantify the relationship between KI and item parameters. Due to the fact that most of the existing item selection algorithms for MAT bear severe computational complexity, which substantially lowers the applicability of MAT, two versions of simplified KL index (SKI), built from the analytical results, are proposed to mimic the behavior of KI, while reducing the overall computational intensity.
When latent variables are used as outcomes in regression analysis, a common approach that is used to solve the ignored measurement error issue is to take a multilevel perspective on item response modeling (IRT). Although recent computational advancement allows efficient and accurate estimation of multilevel IRT models, we argue that a two-stage divide-and-conquer strategy still has its unique advantages. Within the two-stage framework, three methods that take into account heteroscedastic measurement errors of the dependent variable in stage II analysis are introduced; they are the closed-form marginal MLE, the expectation maximization algorithm, and the moment estimation method. They are compared to the naïve two-stage estimation and the one-stage MCMC estimation. A simulation study is conducted to compare the five methods in terms of model parameter recovery and their standard error estimation. The pros and cons of each method are also discussed to provide guidelines for practitioners. Finally, a real data example is given to illustrate the applications of various methods using the National Educational Longitudinal Survey data (NELS 88).
Several methods used to examine differential item functioning (DIF) in Patient-Reported Outcomes Measurement Information System (PROMIS®) measures are presented, including effect size estimation. A summary of factors that may affect DIF detection and challenges encountered in PROMIS DIF analyses, e.g., anchor item selection, is provided. An issue in PROMIS was the potential for inadequately modeled multidimensionality to result in false DIF detection. Section 1 is a presentation of the unidimensional models used by most PROMIS investigators for DIF detection, as well as their multidimensional expansions. Section 2 is an illustration that builds on previous unidimensional analyses of depression and anxiety short-forms to examine DIF detection using a multidimensional item response theory (MIRT) model. The Item Response Theory-Log-likelihood Ratio Test (IRT-LRT) method was used for a real data illustration with gender as the grouping variable. The IRT-LRT DIF detection method is a flexible approach to handle group differences in trait distributions, known as impact in the DIF literature, and was studied with both real data and in simulations to compare the performance of the IRT-LRT method within the unidimensional IRT (UIRT) and MIRT contexts. Additionally, different effect size measures were compared for the data presented in Section 2. A finding from the real data illustration was that using the IRT-LRT method within a MIRT context resulted in more flagged items as compared to using the IRT-LRT method within a UIRT context. The simulations provided some evidence that while unidimensional and multidimensional approaches were similar in terms of Type I error rates, power for DIF detection was greater for the multidimensional approach. Effect size measures presented in Section 1 and applied in Section 2 varied in terms of estimation methods, choice of density function, methods of equating, and anchor item selection. Despite these differences, there was considerable consistency in results, especially for the items showing the largest values. Future work is needed to examine DIF detection in the context of polytomous, multidimensional data. PROMIS standards included incorporation of effect size measures in determining salient DIF. Integrated methods for examining effect size measures in the context of IRT-based DIF detection procedures are still in early stages of development.
Multidimensional item response theory (MIRT) models have generated increasing interest in the psychometrics literature. Efficient approaches for estimating MIRT models with dichotomous responses have been developed, but constructing an equally efficient and robust algorithm for polytomous models has received limited attention. To address this gap, this paper presents a novel Gaussian variational estimation algorithm for the multidimensional generalized partial credit model. The proposed algorithm demonstrates both fast and accurate performance, as illustrated through a series of simulation studies and two real data analyses.
Modern assessment demands, resulting from educational reform efforts, call for strengthening diagnostic testing capabilities to identify not only the understanding of expected learning goals but also related intermediate understandings that are steppingstones on pathways to learning goals. An accurate and nuanced way of interpreting assessment results will allow subsequent instructional actions to be targeted. An appropriate psychometric model is indispensable in this regard. In this study, we developed a new psychometric model, namely, the diagnostic facet status model (DFSM), which belongs to the general class of cognitive diagnostic models (CDM), but with two notable features: (1) it simultaneously models students’ target understanding (i.e., goal facet) and intermediate understanding (i.e., intermediate facet); and (2) it models every response option, rather than merely right or wrong responses, so that each incorrect response uniquely contributes to discovering students’ facet status. Given that some combination of goal and intermediate facets may be impossible due to facet hierarchical relationships, a regularized expectation–maximization algorithm (REM) was developed for model estimation. A log-penalty was imposed on the mixing proportions to encourage sparsity. As a result, those impermissible latent classes had estimated mixing proportions equal to 0. A heuristic algorithm was proposed to infer a facet map from the estimated permissible classes. A simulation study was conducted to evaluate the performance of REM to recover facet model parameters and to identify permissible latent classes. A real data analysis was provided to show the feasibility of the model.
Survey instruments and assessments are frequently used in many domains of social science. When the constructs that these assessments try to measure become multifaceted, multidimensional item response theory (MIRT) provides a unified framework and convenient statistical tool for item analysis, calibration, and scoring. However, the computational challenge of estimating MIRT models prohibits its wide use because many of the extant methods can hardly provide results in a realistic time frame when the number of dimensions, sample size, and test length are large. Instead, variational estimation methods, such as Gaussian variational expectation–maximization (GVEM) algorithm, have been recently proposed to solve the estimation challenge by providing a fast and accurate solution. However, results have shown that variational estimation methods may produce some bias on discrimination parameters during confirmatory model estimation, and this note proposes an importance-weighted version of GVEM (i.e., IW-GVEM) to correct for such bias under MIRT models. We also use the adaptive moment estimation method to update the learning rate for gradient descent automatically. Our simulations show that IW-GVEM can effectively correct bias with modest increase of computation time, compared with GVEM. The proposed method may also shed light on improving the variational estimation for other psychometrics models.
Item replenishing is essential for item bank maintenance in cognitive diagnostic computerized adaptive testing (CD-CAT). In regular CAT, online calibration is commonly used to calibrate the new items continuously. However, until now no reference has publicly become available about online calibration for CD-CAT. Thus, this study investigates the possibility to extend some current strategies used in CAT to CD-CAT. Three representative online calibration methods were investigated: Method A (Stocking in Scale drift in on-line calibration. Research Rep. 88-28, 1988), marginal maximum likelihood estimate with one EM cycle (OEM) (Wainer & Mislevy In H. Wainer (ed.) Computerized adaptive testing: A primer, pp. 65–102, 1990) and marginal maximum likelihood estimate with multiple EM cycles (MEM) (Ban, Hanson, Wang, Yi, & Harris in J. Educ. Meas. 38:191–212, 2001). The objective of the current paper is to generalize these methods to the CD-CAT context under certain theoretical justifications, and the new methods are denoted as CD-Method A, CD-OEM and CD-MEM, respectively. Simulation studies are conducted to compare the performance of the three methods in terms of item-parameter recovery, and the results show that all three methods are able to recover item parameters accurately and CD-Method A performs best when the items have smaller slipping and guessing parameters. This research is a starting point of introducing online calibration in CD-CAT, and further studies are proposed for investigations such as different sample sizes, cognitive diagnostic models, and attribute-hierarchical structures.
Statistical methods for identifying aberrances on psychological and educational tests are pivotal to detect flaws in the design of a test or irregular behavior of test takers. Two approaches have been taken in the past to address the challenge of aberrant behavior detection, which are (1) modeling aberrant behavior via mixture modeling methods, and (2) flagging aberrant behavior via residual based outlier detection methods. In this paper, we propose a two-stage method that is conceived of as a combination of both approaches. In the first stage, a mixture hierarchical model is fitted to the response and response time data to distinguish normal and aberrant behaviors using Markov chain Monte Carlo (MCMC) algorithm. In the second stage, a further distinction between rapid guessing and cheating behavior is made at a person level using a Bayesian residual index. Simulation results show that the two-stage method yields accurate item and person parameter estimates, as well as high true detection rate and low false detection rate, under different manipulated conditions mimicking NAEP parameters. A real data example is given in the end to illustrate the potential application of the proposed method.
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational speed. This study introduces a novel “divide- and-conquer” parallel algorithm built on the Wasserstein posterior approximation concept, aiming to enhance computational speed while maintaining accurate parameter estimation. This algorithm enables drawing parameters from segmented data subsets in parallel, followed by an amalgamation of these parameters via Wasserstein posterior approximation. Theoretical support for the algorithm is established through asymptotic optimality under certain regularity assumptions. Practical validation is demonstrated using real-world data from the Programme for International Student Assessment. Ultimately, this research proposes a transformative approach to managing educational big data, offering a scalable, efficient, and precise alternative that promises to redefine traditional practices in educational assessments.