We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.
We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers ($>$kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources.
We briefly consider the history of maser variability, and of flaring variability specifically. We consider six proposed flare generation mechanisms, and model them computationally with codes that include saturation and 3-D structure (the last mechanism is modelled in 1-D). Fits to observational light curves have been made for some sources, and we suggest that a small number of observational parameters can diagnose the flare mechanism in many cases. The strongest flares arise from mechanisms that can increase the number density of inverted molecules in addition to by geometrical effects, and in events where unsaturated quiescent masers become saturated during the flare.
We compare detailed observations of multiple H2O maser transitions around the red supergiant star VY CMa with models to constrain the physical conditions in the complex outflows. The temperature profile is consistent with a variable mass loss rate but the masers are mostly concentrated in dense clumps. High-excitation lines trace localised outflows near the star.
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$ T), compact ($R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of $H_{98,y2} = 1$, SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$ keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
Non-stoichiometric, carbon-containing crandallite from Guatemala and plumbogummite from Cumbria have been characterized using electron microprobe (EMPA) and wet-chemical analyses, Rietveld analysis of powder X-ray diffraction (PXRD) patterns, and infrared (IR), Raman and cathodoluminescence (CL) spectroscopies. The samples contain 11.0 and 4.8 wt.% CO2, respectively. The IR spectra for both samples show a doublet in the range 1410–1470 cm–1, corresponding to CO3 vibrations. Direct confirmation of CO3 replacing PO4 was obtained from difference Fourier maps in the Rietveld analysis. Carbonate accounts for 67% of the C in the plumbogummite and 20% of the C in the Guatemalan crandallite, the remainder being present as nano-scale organic carbon. The CO3 substitution for PO4 is manifested in a large contraction of the tetrahedral volume (14–19%) and by a contraction of the a axis, analogous to observations for carbonate-containing fluorapatites. Stoichiometric crandallite from Utah was characterized using the same methods, for comparison with the non-stoichiometric, carbon-bearing phases.
Giant electromagnetic pulses (EMP) generated during the interaction of high-power lasers with solid targets can seriously degrade electrical measurements and equipment. EMP emission is caused by the acceleration of hot electrons inside the target, which produce radiation across a wide band from DC to terahertz frequencies. Improved understanding and control of EMP is vital as we enter a new era of high repetition rate, high intensity lasers (e.g. the Extreme Light Infrastructure). We present recent data from the VULCAN laser facility that demonstrates how EMP can be readily and effectively reduced. Characterization of the EMP was achieved using B-dot and D-dot probes that took measurements for a range of different target and laser parameters. We demonstrate that target stalk geometry, material composition, geodesic path length and foil surface area can all play a significant role in the reduction of EMP. A combination of electromagnetic wave and 3D particle-in-cell simulations is used to inform our conclusions about the effects of stalk geometry on EMP, providing an opportunity for comparison with existing charge separation models.
In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean–atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010–2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.
A useful result about leftmost and rightmost paths in two-dimensional bond percolation is proved. This result was introduced without proof in Gray (1991) in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete-time contact process and two-dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewhat counter-intuitive correlation inequality.
During 1990 we surveyed the southern sky using a multi-beam receiver at frequencies of 4850 and 843 MHz. The half-power beamwidths were 4 and 25 arcmin respectively. The finished surveys cover the declination range between +10 and −90 degrees declination, essentially complete in right ascension, an area of 7.30 steradians. Preliminary analysis of the 4850 MHz data indicates that we will achieve a five sigma flux density limit of about 30 mJy. We estimate that we will find between 80 000 and 90 000 new sources above this limit. This is a revised version of the paper presented at the Regional Meeting by the first four authors; the surveys now have been completed.
The first experimental measurements of intense (${\sim }7\times 10^{19}~ {\rm W}~ {\rm cm}^{-2}$) laser-driven terahertz (THz) radiation from a solid target which is preheated by an intense pulse of laser-accelerated protons is reported. The total energy of the THz radiation is found to decrease by approximately a factor of 2 compared to a cold target reference. This is attributed to an increase in the scale length of the preformed plasma, driven by proton heating, at the front surface of the target, where the THz radiation is generated. The results show the importance of controlling the preplasma scale length for THz production.
The Dominion Radio Astrophysical Observatory (DRAO) is carrying out a survey as part of an international collaboration to image the northe, at a common resolution, in emission from all major constituents of the interstellar medium; the neutral atomic gas, the molecular gas, the ionised gas, dust and relativistic plasma. For many of these constituents the angular resolution of the images (1 arcmin) will be more than a factor of 10 better than any previous studies. The aim is to produce a publicly-available database of high resolution, high-dynamic range images of the Galaxy for multi-phase studies of the physical states and processes in the interstellar medium. We will sketch the main scientific motivations as well as describe some preliminary results from the Canadian Galactic Plane Survey/Releve Canadien du Plan Galactique (CGPS/RCPG).
Joint hypermobility is overrepresented among people with anxiety and can beassociated with abnormal autonomic reactivity. We tested for associationsbetween regional cerebral grey matter and hypermobility in 72 healthyvolunteers using voxel-based morphometry of structural brain scans.Strikingly, bilateral amygdala volume distinguished those with from thosewithout hypermobility. The hypermobility group scored higher forinteroceptive sensitivity yet were not significantly more anxious. Ourfindings specifically link hypermobility to the structural integrity of abrain centre implicated in normal and abnormal emotions and physiologicalresponses. Our observations endorse hypermobility as a multisystem phenotypeand suggest potential mechanisms mediating clinical vulnerability toneuropsychiatric symptoms.
Alcohol consumption during pregnancy remains common in many countries. Exposure to even low amounts of alcohol (i.e. ethanol) in pregnancy can lead to the heterogeneous fetal alcohol spectrum disorders (FASD), while heavy alcohol consumption can result in the fetal alcohol syndrome (FAS). FAS is characterized by cerebral dysfunction, growth restriction and craniofacial malformations. However, the effects of lower doses of alcohol during pregnancy, such as those that lead to FASD, are less well understood. In this article, we discuss the findings of recent studies performed in our laboratories on the effects of fetal alcohol exposure using sheep, in which we investigated the effects of late gestational alcohol exposure on the developing brain, arteries, kidneys, heart and lungs. Our studies indicate that alcohol exposure in late gestation can (1) affect cerebral white matter development and increase the risk of hemorrhage in the fetal brain, (2) cause left ventricular hypertrophy with evidence of altered cardiomyocyte maturation, (3) lead to a decrease in nephron number in the kidney, (4) cause altered arterial wall stiffness and endothelial and smooth muscle function and (5) result in altered surfactant protein mRNA expression, surfactant phospholipid composition and pro-inflammatory cytokine mRNA expression in the lung. These findings suggest that fetal alcohol exposure in late gestation can affect multiple organs, potentially increasing the risk of disease and organ dysfunction in later life.
There is considerable evidence for a unitary and dimensional view of the genetic vulnerability to symptoms of anxiety and depression. The GENESiS (Genetic Environmental–Nature of Emotional States in Siblings) Study aims to use a multivariate approach to detect genetic loci that contribute to individual differences in this vulnerability dimension. The study used the UK General Practice Research Framework to generate a community-based sample of siblings. Questionnaire measures of anxiety/depression included the short form of the neuroticism scale from the revised Eysenck Personality Questionnaire (EPQ-N), the General Health Questionnaire (GHQ-12), and the anxious arousal and high positive affect subscales from the Mood and Anxiety Symptoms Questionnaire (MASQ-AA and MASQ-HPA). Genetic model-fitting of 2658 unselected sibships provided evidence for a single common genetic (familial) factor that accounted for a substantial proportion of the genetic variances and covariances of these four measures. Using the parameter estimates of this model, we constructed a composite index of this common genetic factor. This index, which has a sib correlation of 0.22, will be used as a quantitative phenotype in the molecular genetic phase of GENESiS. Twin Research (2000) 3, 316–322.