We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The oscillatory Kelvin–Helmholtz (K–H) instability of a planar liquid sheet was experimentally investigated in the presence of an axial oscillating gas flow. An experimental system was initiated to study the oscillatory K–H instability. The surface wave growth rates were measured and compared with theoretical results obtained using the authors’ early linear method. Furthermore, in a larger parameter range experimentally studied, it is interesting that there are four different unstable modes: first disordered mode (FDM), second disordered mode (SDM), K–H harmonic unstable mode (KHH) and K–H subharmonic unstable mode (KHS). These unstable modes are determined by the oscillating amplitude, oscillating frequency and liquid inertia force. The frequencies of KHH are equal to the oscillating frequency; the frequency of KHS equals half the oscillating frequency, while the frequencies of FDM and SDM are irregular. By considering the mechanism of instability, the instability regime maps on the relative Weber number versus liquid Weber number (Werel–Wel) and the Weber number ratio versus the oscillating frequency (Werel/Wel–$\varOmega$s2) were plotted. Among these four modes, KHS is the most unexpected: the frequency of this mode is not equal to the oscillating frequency, but the surface wave can also couple with the oscillating gas flow. Linear instability theory was applied to divide the parameter range between the different unstable modes. According to linear instability theory, K–H and parametric unstable regions both exist. However, note that all four modes (KHH, KHS, FDM and SDM) corresponded primarily to the K–H unstable region obtained from the theoretical analysis. Nevertheless, the parametric unstable mode was also observed when the oscillating frequency and amplitude were relatively low, and the liquid inertia force was relatively high. The surface wave amplitude was small but regular, and the evolution of this wave was similar to that of Faraday waves. The wave oscillating frequency was half that of the surface wave.
Schistosomiasis has been subjected to extensive control efforts in the People's Republic of China (China) which aims to eliminate the disease by 2030. We describe baseline results of a longitudinal cohort study undertaken in the Dongting and Poyang lakes areas of central China designed to determine the prevalence of Schistosoma japonicum in humans, animals (goats and bovines) and Oncomelania snails utilizing molecular diagnostics procedures. Data from the Chinese National Schistosomiasis Control Programme (CNSCP) were compared with the molecular results obtained.
Sixteen villages from Hunan and Jiangxi provinces were surveyed; animals were only found in Hunan. The prevalence of schistosomiasis in humans was 1.8% in Jiangxi and 8.0% in Hunan determined by real-time polymerase chain reaction (PCR), while 18.3% of animals were positive by digital droplet PCR. The CNSCP data indicated that all villages harboured S. japonicum-infected individuals, detected serologically by indirect haemagglutination assay (IHA), but very few, if any, of these were subsequently positive by Kato-Katz (KK).
Based on the outcome of the IHA and KK results, the CNSCP incorporates targeted human praziquantel chemotherapy but this approach can miss some infections as evidenced by the results reported here. Sensitive molecular diagnostics can play a key role in the elimination of schistosomiasis in China and inform control measures allowing for a more systematic approach to treatment.
The relationship between SFA consumption and the risk of overweight/obesity remains unclear. Epidemiological evidence is lacking among Chinese population. This study aimed to investigate the association between individual dietary SFA intake and the risk of overweight/obesity in Chinese adults. Data from 8465 adults with BMI < 24 kg/m2 at entry in the China Health and Nutrition Survey (1989–2011) were analysed. Three-day 24-h dietary records were used to collect dietary data. Cox proportional hazards regression models were constructed to estimate hazard ratios (HR) and 95 % CI for the risk of developing overweight or obesity. A total of 3171 incident cases of overweight/obesity were identified (1649 for women and 1522 for men) during a median of 11 years of follow-up. Compared with the lowest category, the intake of total SFA (TSFA) showed no significant association with the risk of overweight/obesity. However, an increased risk of overweight/obesity was observed with a higher intake of medium chain SFA (MCSFA) (Ptrend = 0·004), especially decanoic acid (10:0) (HR was 1·25 (95 % CI 1·10, 1·42) comparing the highest category with the reference group; Ptrend < 0·001), whereas an inverse relationship was observed for hexanoic acid (6:0) consumption; compared with non-consumers, 6:0 intake was associated with 32 % lower risk of overweight/obesity (HR: 0·68 (95 % CI 0·56, 0·84); Ptrend < 0·001). Overall, the intake of subtypes of MCSFA but not TSFA was associated with the risk of overweight/obesity. Increasing hexanoic acid (6:0) and limiting decanoic acid (10:0) consumption may be protective for overweight/obesity among Chinese population.
Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks.
Methods
We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls).
Results
We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal−parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05).
Conclusions
The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory−motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.
Protoporphyrinogen oxidase (PPO) is an important target for discovering new herbicides that interfere with the synthesis of porphyrin. To discover new PPO inhibitors with improved biological activity, a series of new diphenyl ethers containing tetrahydrophthalimide were designed and synthesized. Among them, J6.1 (IC50 = 4.7 nM) and J6.3 (IC50 = 30.0 nM) show higher maize (Zea mays L.) PPO inhibitory activity than the commercial herbicides oxyfluorfen (IC50 = 117.9 nM) and flumioxazin (IC50 = 157.1 nM). The greenhouse herbicidal activity of J6.3 is comparable to that of oxyfluorfen, and it is greater than that of flumioxazin. Even at a dose of 300 g ai ha−1, cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) show greater tolerance to J6.3, suggesting that J6.3 could be used for further development of new herbicide candidates in those fields. In addition, molecular docking has been used to further study the mechanism of action of J6.3. The results show that the introduction of a nitro group and tetrahydrophthalimide into the diphenyl ether structure is beneficial to biological activity.
A growing trend of aging population of China has brought tremendous pressure on the domestic care system, and community education is one of the important content for elderly services. Based on the framework of SAPAD, the community English class in Guangzhou City is taken for case study. Depth research on three stakeholeders-the elderly, social workers and volunteers are carried out by interview, user observation and field research. 6 levels (physical level, syntactic level, empirical level, semantic level, pragmatic level and social level) are extracted based on SAPAD framework, and the behavior- object-significance mapping is completed. Significant clusters of multiple users at different levels are analyzed, and 16 core significant clusters are jointly built. By linking with clustering results of the syntactic level, 6 new function modules are obtained. Finally, the community elderly education service system is built through personas, service blueprint, touch points and storyboard. The new service system will improve learning efficiency, satisfactions and emotional appeals for the elderly, and work efficiency of social workers and volunteers.
In this paper, a single-band local surface plasmon mode resonance metamaterial filter is calculated and simulated. The damping constant of the gold film is optimized in simulations to eliminate the effects of the grain boundary and the surface scattering on the transmission property. The transmission property of the designed metamaterial filter can be enhanced through optimizing structural parameters (the vertical distance or radius of the gold particle). Two narrow transmission bands are achieved due to the electric field enhancement effect. The electric field enhancement factor η = |E|/|E0| is used to reveal the electric field resonance strength change. Higher transmission peak and larger field enhancement factor can be achieved than the pure gold hole array structure.
For gas flows with moderate and low Knudsen numbers, pair-wise collisions in the Boltzmann equation can be approximated by the Langevin model corresponding to the Fokker-Planck equation. Using this simplified collision model, particle numerical schemes, e.g. the Fokker-Planck model (FPM) method, can simulate low Knudsen number gas flows more efficient than those based on the Boltzmann equation, such as the Direct Simulation Monte Carlo (DSMC) method. However, as analyzed in this paper, the transport properties of the FPM method deviate from the physical values as the time step increases, and this problem affects its computational accuracy and efficiency for the simulation of multi-scale flows. Herewe propose a particle Fokker-Planck algorithm with multiscale temporal discretization (MTD-FPM) to overcome the drawbacks of the original FPM method. In the MTD-FPM method, the molecular motion is tracked following the integration scheme of the Langevin model in analogy to the original FPM method. However, to ensure consistent transport coefficients for arbitrary temporal discretization, a time step dependent friction coefficient has been implemented. Several benchmark problems, including Couette, thermal Couette, Poiseuille, and Sod tube flows, are simulated to validate the proposed MTD-FPM method.
In this paper, the recent studies of laboratory astrophysics with strong magnetic fields in China have been reviewed. On the Shenguang-II laser facility of the National Laboratory on High-Power Lasers and Physics, a laser-driven strong magnetic field up to 200 T has been achieved. The experiment was performed to model the interaction of solar wind with dayside magnetosphere. Also the low beta plasma magnetic reconnection (MR) has been studied. Theoretically, the model has been developed to deal with the atomic structures and processes in strong magnetic field. Also the study of shock wave generation in the magnetized counter-streaming plasmas is introduced.
Mixed solvent of ethanol and water using FeSO4⋅7H2O and (NH2)2CS as precursors with polyvinylpyrrolidone as surfactant was used to synthesize cubic FeS2 (pyrite) crystals. Crystalline phase and surface morphologies of the crystals were characterized by X-ray diffraction and scanning electron microscopy, respectively. Volume ratio of solvent, reaction temperature, reaction time, and sulfur source were found to be the key parameters for the formation of pure pyrite crystals. Optimal micron-size pyrite crystals were successfully grown from a mixed solvent of ethanol and water with a volume ratio of 3:2, heated to a reaction temperature of 180 °C, and maintained for 36 h with thiourea as the sulfur source.
The successful synthesis of ZnS hollow microspheres by a solvothermal route is reported. The synthesis was achieved by a proper selection of a sulfur source, i.e., Na2S2O3⋅5H2O or (NH2)2CS, to react with Zn(CH3COO)2⋅2H2O in mixed solvents of ethylene glycol and deionized water. The ZnS products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence spectroscopy. XRD identified the ZnS products to have either zinc blende or wurtzite structure. SEM images revealed hollow ZnS microspheres with 1 to 2 μm diameters and 100 to 200 nm shell thicknesses. TEM images confirmed that the hollow ZnS microspheres were assembled by ZnS crystalline nanocrystallites. The room-temperature photoluminescence spectrum of the zinc blende hollow microspheres showed a strong green emission at 514 nm and weak emission at 379 nm.
Hierarchical ZnO/Si nanoheterostructure was prepared by growing oriented ZnO nanowire bundles onto the top of nanoporous silicon pillar array (NSPA) via a self-catalytic thermal evaporation and vapor-phase transport method. Samples were carefully characterized using field emission scanning electron microscopy, x-ray diffraction, and luminescence spectroscopy. One ultraviolet, one blue-green, and two red emission bands were observed in ZnO/NSPA, and the emission mechanism is discussed by developing a model-based energy band diagram. The origins of the ultraviolet and blue-green photoluminescence (PL) bands were attributed to the emission from the band edge transition and surface states of oxygen vacancies of ZnO, while two red PL bands originated from NSPA and could be well explained by the quantum confinement-luminescence center model. The realization of such all solid and wide wavelength nanodevice might be both meaningful for developing new concept lighting devices and potentially extended to fabricate hierarchical Si-based nanoheterostructures in fabricating other optoelectronic nanodevices.
We consider the following two definitions of discounting: (i) multiplicative coefficient in front of the rewards, and (ii) probability that the process has not been stopped if the stopping time has an exponential distribution independent of the process. It is well known that the expected total discounted rewards corresponding to these definitions are the same. In this note we show that, the variance of the total discounted rewards is smaller for the first definition than for the second definition.
We have demonstrated conformal deposition of amorphous GeSbTe films in high aspect ratio structures by MOCVD. SEM analysis showed the as-deposited GeSbTe films had smooth morphologies and were well controlled for void free amorphous conformal deposition. GeSbTe films adhere well to SiO2, TiN, and TiAlN. The morphology and adhesion are stable in 420°C post process. By annealing at 365°C, amorphous GeSbTe films converted into crystalline GeSbTe with polycrystalline grain sizes of 5nm. Film resistivity in the crystalline phase ranged from 0.001 to 0.1 Ω-cm, suitable for device applications. Phase change devices fabricated with confined via structures filled with MOCVD GeSbTe showed cycle endurances up to 1×1010 with a dynamic set/rest resistance of two orders of magnitude.
To increase our understanding of the relationships of trunk fat mass (FMtrunk) and four anthropometric indices in Chinese males, 1090 males aged 20–40 years were randomly recruited from the city of Changsha, China. Waist circumference (WC) and hip circumference (HC) were measured using standardized equipment, and three other anthropometric indices of BMI, waist:hip ratio (WHR) and conicity index (CoI) were calculated using weight, height, HC and WC. FMtrunk (in kg) was measured using a Hologic QDR 4500 W dual-energy X-ray absorptiometry scanner. There was an increasing trend of FMtrunk, %FMtrunk (percentage of FMtrunk) and BMI, WC, WHR, CoI in successively older age groups (e.g. the mean FMtrunk values were 4·63 (sd 2·58), 5·39 (sd 2·74), 5·93 (sd 2·82), 6·57 (sd 2·94) in four 5-year age groups, respectively). FMtrunk and %FMtrunk were significantly correlated with four anthropometric indices with the Pearson's correlation coefficients ranging from 0·25 to 0·86. Principal component analysis was performed to form three principal components that interpreted over 99·5% of the total variation of four related anthropometric indices in all age groups, with over 65% of the total variation accounted by principal component 1. Multiple regression analyses showed that three principal components explained a greater variance (R2 70·0–80·1%) in FMtrunk than did BMI or WC alone (R2 57·8–74·1%). The present results suggest that there is an increasing trend of FMtrunk and four anthropometric indices in successively older age groups; that age has important effects on the relationships of FMtrunk and studied anthropometric indices; and that the accuracy of predicting FMtrunk using four anthropometric indices is higher than using BMI or WC alone.
In vitro development of goat embryos obtained by fertilizing oocytes using intracytoplasmic sperm injection (ICSI) was investigated. The results showed that the blastocyst rate was significantly higher (P<0.05) when the embryos were co-cultured with granular cells (GCs) in media CR1aa supplemented with 10% bovine follicular fluid (BFF) (22.2%) than with 5% (13.1%) and 15% BFF (2.7%). When embryos were co-cultured with GCs in SOFaa media, the highest blastocyst rate was obtained from supplementation with 10% BFF (25.1%), which was significantly different from 5% (12.9%) and 15% BFF (3.0%) groups. When 10% BFF and fetus bovine serum (FBS) were added into CR1aa or SOFaa media, the goat ICSI blastocyst rates were 22.6 and 26.9% or 5.8 and 6.1% respectively. These results suggest that both CR1aa and SOFaa could be used as culture media for goat ICSI embryos, 10% BFF could significantly increase the blastocyst rate and BFF was more efficient than FBS for the early in vitro development of goat ICSI embryos.
Quantum dot infrared photodetectors (QDIPs) have been studied widely for normal-incidence infrared detection. The 3D confinement provided by quantum dots allows for the elimination of gratings that are typically required for normal-incidence detection in quantum well infrared photodetectors (QWIPs). Furthermore, the growth of Ge dots on Si substrates offers the potential for integration with existing CMOS platforms. To date, however, Ge QDIPs have typically been grown epitaxially by Stranski-Krastonov growth – producing pancake-like dots with base dimensions of 50-100 nm, heights of 7-10 nm, and an aerial dot density of 109–1010 cm−2. Such dots have poor lateral confinement, causing them to have non-ideal normal-incidence absorption characteristics, similar to quantum wells. In this work, we demonstrate infrared absorption in Ge dots with base dimensions of approximately 15 nm. These dots are epitaxially grown on pre-patterned Si substrates, with an aerial dot density of approximately 1011 cm−2. The substrates are prepared by using diblock copolymers to create a nano-pattern on the substrate surface which is transferred to the substrate by dry etching. The size of this pattern determines the base dimensions of the Ge dots. After growth, these dots are then tested for their infrared absorption properties using Fourier Transform Infrared (FTIR) Spectroscopy. The normal-incidence absorption of the dots can be studied with FTIR by varying the polarization angle of the infrared light. We present FTIR absorption spectra for samples grown with various conditions (e.g., different dot doping levels, numbers of layers, and dot base dimensions) and investigate the effects of different growth conditions on infrared absorption properties. We also report on the normal-incidence absorption characteristics of these dots by presenting absorption spectra for various polarization angles of infrared light.
AFLP provides an effective, rapid and economical tool for detecting a large number of polymorphic genetic markers that are highly reliable and reproducible, and are able to be genotyped automatically. The AFLP technique has been used extensively to detect genetic polymorphisms, evaluate and characterize breed resources, construct genetic maps and identify genes. In this paper, we describe the optimization of the AFLP technique for porcine genomic DNA fingerprinting, including the enzyme digestion, adapter ligation, preamplification, selective amplification, denatured PAGE, silver staining and multicolour fluorescent detection. Twenty-eight polymorphic markers were detected in the pooled genomic DNA of 44 pig breeds (populations) by E32/T32 primer combinations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.