We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove an asymptotic formula for the second moment of central values of Dirichlet L-functions restricted to a coset. More specifically, consider a coset of the subgroup of characters modulo d inside the full group of characters modulo q. Suppose that $\nu _p(d) \geq \nu _p(q)/2$ for all primes p dividing q. In this range, we obtain an asymptotic formula with a power-saving error term; curiously, there is a secondary main term of rough size $q^{1/2}$ here which is not predicted by the integral moments conjecture of Conrey, Farmer, Keating, Rubinstein, and Snaith. The lower-order main term does not appear in the second moment of the Riemann zeta function, so this feature is not anticipated from the analogous archimedean moment problem.
We also obtain an asymptotic result for smaller d, with $\nu _p(q)/3 \leq \nu _p(d) \leq \nu _p(q)/2$, with a power-saving error term for d larger than $q^{2/5}$. In this more difficult range, the secondary main term somewhat changes its form and may have size roughly d, which is only slightly smaller than the diagonal main term.
We present a novel scheme for rapid quantitative analysis of debris generated during experiments with solid targets following relativistic laser–plasma interaction at high-power laser facilities. Results are supported by standard analysis techniques. Experimental data indicate that predictions by available modelling for non-mass-limited targets are reasonable, with debris of the order of hundreds of μg per shot. We detect for the first time two clearly distinct types of debris emitted from the same interaction. A fraction of the debris is ejected directionally, following the target normal (rear and interaction side). The directional debris ejection towards the interaction side is larger than on the side of the target rear. The second type of debris is characterized by a more spherically uniform ejection, albeit with a small asymmetry that favours ejection towards the target rear side.
Understanding the physics of electromagnetic pulse (EMP) emission and nozzle damage is critical for the long-term operation of laser experiments with gas targets, particularly at facilities looking to produce stable sources of radiation at high repetition rates. We present a theoretical model of plasma formation and electrostatic charging when high-power lasers are focused inside gases. The model can be used to estimate the amplitude of gigahertz EMPs produced by the laser and the extent of damage to the gas jet nozzle. Looking at a range of laser and target properties relevant to existing high-power laser systems, we find that EMP fields of tens to hundreds of kV/m can be generated several metres from the gas jet. Model predictions are compared with measurements of EMPs, plasma formation and nozzle damage from two experiments on the VEGA-3 laser and one experiment on the Vulcan Petawatt laser.
The California Department of Public Health (CDPH) reviewed 109 cases of healthcare personnel (HCP) with laboratory-confirmed mpox to understand transmission risk in healthcare settings. Overall, 90% of HCP with mpox had nonoccupational exposure risk factors. One occupationally acquired case was associated with sharps injury while unroofing a patient’s lesion for diagnostic testing.
The ability to quickly refresh gas-jet targets without cycling the vacuum chamber makes them a promising candidate for laser-accelerated ion experiments at high repetition rate. Here we present results from the first high repetition rate ion acceleration experiment on the VEGA-3 PW-class laser at CLPU. A near-critical density gas-jet target was produced by forcing a 1000 bar H$_2$ and He gas mix through bespoke supersonic shock nozzles. Proton energies up to 2 MeV were measured in the laser forward direction and 2.2 MeV transversally. He$^{2+}$ ions up to 5.8 MeV were also measured in the transverse direction. To help maintain a consistent gas density profile over many shots, nozzles were designed to produce a high-density shock at distances larger than 1 mm from the nozzle exit. We outline a procedure for optimizing the laser–gas interaction by translating the nozzle along the laser axis and using different nozzle materials. Several tens of laser interactions were performed with the same nozzle which demonstrates the potential usefulness of gas-jet targets as high repetition rate particle source.
We studied the extent of carbapenemase-producing Enterobacteriaceae (CPE) sink contamination and transmission to patients in a nonoutbreak setting.
Methods:
During 2017–2019, 592 patient-room sinks were sampled in 34 departments. Patient weekly rectal swab CPE surveillance was universally performed. Repeated sink sampling was conducted in 9 departments. Isolates from patients and sinks were characterized using pulsed-field gel electrophoresis (PFGE), and pairs of high resemblance were sequenced by Oxford Nanopore and Illumina. Hybrid assembly was used to fully assemble plasmids, which are shared between paired isolates.
Results:
In total, 144 (24%) of 592 CPE-contaminated sinks were detected in 25 of 34 departments. Repeated sampling (n = 7,123) revealed that 52%–100% were contaminated at least once during the sampling period. Persistent contamination for >1 year by a dominant strain was common. During the study period, 318 patients acquired CPE. The most common species were Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. In 127 (40%) patients, a contaminated sink was the suspected source of CPE acquisition. For 20 cases with an identical sink-patient strain, temporal relation suggested sink-to-patient transmission. Hybrid assembly of specific sink-patient isolates revealed that shared plasmids were structurally identical, and SNP differences between shared pairs, along with signatures for potential recombination events, suggests recent sharing of the plasmids.
Conclusions:
CPE-contaminated sinks are an important source of transmission to patients. Although traditionally person-to-person transmission has been considered the main route of CPE transmission, these data suggest a change in paradigm that may influence strategies of preventing CPE dissemination.
Part III covers the years of Washington’s brief final retirement from public life (1797–1799). As is well known, he hoped at last to find relief from the mental strain that had almost constantly accompanied him through many years of consequential, perplexing, and often perilous public service. This hope was not, however, perfectly realized. Even in retirement Washington continued to follow politics closely, forming and expressing opinions on the events of the day, worrying about the dangers of party spirit at home and war abroad. The latter concern drew him one last time into a position of official responsibility: he accepted when President John Adams appointed him commander-in-chief of the provisional army that was planned in the event of open war with France.