We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Synthetic Aperture Radar Interferometry (InSAR) is an active remote sensing method that uses repeated radar scans of the Earth's solid surface to measure relative deformation at centimeter precision over a wide swath. It has revolutionized our understanding of the earthquake cycle, volcanic eruptions, landslides, glacier flow, ice grounding lines, ground fluid injection/withdrawal, underground nuclear tests, and other applications requiring high spatial resolution measurements of ground deformation. This book examines the theory behind and the applications of InSAR for measuring surface deformation. The most recent generation of InSAR satellites have transformed the method from investigating 10's to 100's of SAR images to processing 1000's and 10,000's of images using a wide range of computer facilities. This book is intended for students and researchers in the physical sciences, particularly for those working in geophysics, natural hazards, space geodesy, and remote sensing. This title is also available as Open Access on Cambridge Core.
We studied flow organization and heat transfer properties in mixed turbulent convection within Poiseuille–Rayleigh–Bénard channels subjected to temporally modulated sinusoidal wall temperatures. Three-dimensional direct numerical simulations were performed for Rayleigh numbers in the range $10^6 \leqslant Ra \leqslant 10^8$, a Prandtl number $Pr = 0.71$ and a bulk Reynolds number $Re_b \approx 5623$. We found that high-frequency wall temperature oscillations had minimal impact on flow structures, while low-frequency oscillations induced adaptive changes, forming stable stratified layers during cooling. Proper orthogonal decomposition (POD) analysis revealed a dominant streamwise unidirectional shear flow mode. Large-scale rolls oriented in the streamwise direction appeared as higher POD modes and were significantly influenced by lower-frequency wall temperature variations. Long-time-averaged statistics showed that the Nusselt number increased with decreasing frequency by up to 96 %, while the friction coefficient varied by less than 15 %. High-frequency modulation predominantly influenced near-wall regions, enhancing convective effects, whereas low frequencies reduced these effects via stable stratified layer formation. Phase-averaged statistics showed that high-frequency modulation resulted in phase-stable streamwise velocity and temperature profiles, while low-frequency modulation caused significant variations due to weakened turbulence. Turbulent kinetic energy (TKE) profiles remained high near the wall during both heating and cooling at high frequency, but decreased during cooling at low frequencies. A TKE budget analysis revealed that during heating, TKE production was dominated by shear near the wall and by buoyancy in the bulk region; while during cooling, the production, distribution and dissipation of TKE were all nearly zero.
Depression has been linked to disruptions in resting-state networks (RSNs). However, inconsistent findings on RSN disruptions, with variations in reported connectivity within and between RSNs, complicate the understanding of the neurobiological mechanisms underlying depression.
Methods
A systematic literature search of PubMed and Web of Science identified studies that employed resting-state functional magnetic resonance imaging (fMRI) to explore RSN changes in depression. Studies using seed-based functional connectivity analysis or independent component analysis were included, and coordinate-based meta-analyses were performed to evaluate alterations in RSN connectivity both within and between networks.
Results
A total of 58 studies were included, comprising 2321 patients with depression and 2197 healthy controls. The meta-analysis revealed significant alterations in RSN connectivity, both within and between networks, in patients with depression compared with healthy controls. Specifically, within-network changes included both increased and decreased connectivity in the default mode network (DMN) and increased connectivity in the frontoparietal network (FPN). Between-network findings showed increased DMN–FPN and limbic network (LN)–DMN connectivity, decreased DMN–somatomotor network and LN–FPN connectivity, and varied ventral attention network (VAN)–dorsal attentional network (DAN) connectivity. Additionally, a positive correlation was found between illness duration and increased connectivity between the VAN and DAN.
Conclusions
These findings not only provide a comprehensive characterization of RSN disruptions in depression but also enhance our understanding of the neurobiological mechanisms underlying depression.
The small-scale velocity gradient is connected to fundamental properties of turbulence at the large scales. By neglecting the viscous and non-local pressure Hessian terms, we derive a restricted Euler model for the turbulent flow along an undeformed free surface and discuss the associated stable/unstable manifolds. The model is compared with the data collected by high-resolution imaging on the free surface of a turbulent water tank with negligible surface waves. The joint probability density function (p.d.f.) of the velocity gradient invariants exhibits a distinct pattern from the one in the bulk. The restricted Euler model captures the enhanced probability along the unstable branch of the manifold and the asymmetry of the joint p.d.f. Significant deviations between the experiments and the prediction are evident, however, in particular concerning the compressibility of the surface flow. These results highlight the enhanced intermittency of the velocity gradient and the influence of the free surface on the energy cascade.
In this paper, we simulate the process of two-dimensional axisymmetric fluid–structure coupling of a droplet impacting on a flexible disk. The effects of dimensionless disk stiffness (K = 0.1–1000), Weber number (We = 1–500) and contact angle (θ = 130° and 60°) on the dynamics of the droplet impacting on the flexible disk are analysed. The results indicate that there are five typical impact modes for a hydrophobic surface (θ = 130°) and four typical impact modes for a hydrophilic surface (θ = 60°) within the range of considered parameters. The analysis of spreading factor reveals that a part of the energy is transferred to the substrate, which is manifested as a weakening of the droplet spreading, when the substrate deforms downwards due to the droplet impact; the squeezing of the droplet causes a tendency to flow from the centre of the droplet to the edge, which is manifested as an enhancement of the droplet spreading, when the substrate recovers from the downward deformation. The effect of the substrate flexibility on the maximum spreading factor depends on the competition of the two mechanisms above. Based on this, a modified scaling law of βmax has been proposed by introducing the effective Weber number (Wem). The analysis of impact force demonstrates that the peak of the impact force is related to the deflection of the flexible substrate which is different from that of a rigid wall; and three typical processes of impact force variation have been summarised. In addition, unlike the rigid substrate scenario, there is an energy interaction between the droplet and the flexible substrate after impact occurs, which is classified as three typical energy transformation processes.
In this paper, a novel tensioning and relaxing wearable system is introduced to improve the wearing comfort and load-bearing capabilities of knee exoskeletons. The research prototype of the novel system, which features a distinctive overrunning clutch drive, is presented. Through co-simulation with ANSYS, MATLAB, and SOLIDWORKS software, a comprehensive multi-objective optimization is performed to enhance the dynamics performance of the prototype. Firstly, the wearing contact stiffness of the prototype and the mechanical parameters of the relevant materials are simulated and fitted based on the principle of functional equivalence. And then, its equivalent nonlinear circumferential stiffness model is obtained. Secondly, to enhance the wearing comfort of the exoskeleton, a novel comprehensive performance evaluation index, termed wearing comfort, is introduced. The index considers multiple factors such as the duration of vibration transition, the acceleration encountered during wear, and the average pressure applied. Finally, through the utilization of this indicator, the system’s dynamics performance is optimized via multi-platform co-simulation, and the simulation results validate the effectiveness of the research method and the proposed wearable comfort index. The theoretical basis for the subsequent research on the effectiveness of prototype weight-bearing is provided.
Ceratopsian dinosaurs underwent great changes, including a shift of locomotion mode, enlarged horns and frills, and increased body size. These changes occur alongside the evolution of endocranial morphology and physiology such as the size and shape of the flocculus, hearing range, olfactory ratio, and the reptile encephalization quotient (REQ). However, the evolution of endocranial structures in early ceratopsians is still unclear because of a lack of information on the earliest ceratopsians. Here, we reconstructed the endocasts of three early-diverging ceratopsians including the Late Jurassic Yinlong, and the Early Cretaceous Liaoceratops and Psittacosaurus. These ceratopsians display obvious flocculi, large and separate olfactory bulbs, long and high anterior semicircular canals, and relatively long cochlear ducts. In the evolution of the earliest ceratopsians to early neoceratopsians, changes include the increasing size of the flocculus (which is reduced or absent in late-diverging ceratopsids), the attenuation of the semicircular canals, and the heightening of the anterior semicircular canal (which is shortened in late-diverging ceratopsids). The endocranial structures suggest early-diverging ceratopsians had a higher olfactory acuity and were adapted to hearing higher frequencies than late-diverging ceratopsians. Furthermore, the REQ suggests that Yinlong and Psittacosaurus were more highly encephalized than late-diverging ceratopsians and most extant reptiles. The angle of the lateral semicircular canal suggests that heads in ceratopsians display a transition from a forward posture to a more downward posture. Our new findings are significant for understanding the physiological changes during ceratopsian evolution and also have implications for the evolution of physiology in extant tetrapods.
Sjögren's syndrome (SS) is a chronic autoimmune disease caused by immune system disorders. The main clinical manifestations of SS are dry mouth and eyes caused by the destruction of exocrine glands, such as the salivary and lacrimal glands, and systemic manifestations, such as interstitial pneumonia, interstitial nephritis and vasculitis. The pathogenesis of this condition is complex. However, this has not been fully elucidated. Treatment mainly consists of glucocorticoids, disease-modifying antirheumatic drugs and biological agents, which can only control inflammation but not repair the tissue. Therefore, identifying methods to regulate immune disorders and repair damaged tissues is imperative. Cell therapy involves the transplantation of autologous or allogeneic normal or bioengineered cells into the body of a patient to replace damaged cells or achieve a stronger immunomodulatory capacity to cure diseases, mainly including stem cell therapy and immune cell therapy. Cell therapy can reduce inflammation, relieve symptoms and promote tissue repair and regeneration of exocrine glands such as the salivary glands. It has broad application prospects and may become a new treatment strategy for patients with SS. However, there are various challenges in cell preparation, culture, storage and transportation. This article reviews the research status and prospects of cell therapies for SS.
Previous studies suggest a link between vitamin D status and COVID-19 susceptibility in hospitalised patients. This study aimed to investigate whether vitamin D concentrations in elderly individuals were associated with their susceptibility to Omicron COVID-19 incidence, the severity of the disease and the likelihood of reoccurrence during the era of the post-‘zero-COVID-19’ policies in China.
Design:
In this retrospective study, participants were categorised into three groups based on their 25(OH)D concentrations: deficiency (< 20 ng/ml), insufficiency (20 to < 30 ng/ml) and sufficiency (≥ 30 ng/ml). The demographic and clinical characteristics, comorbidities and the incidence rate, reoccurrence rate and severity of Omicron COVID-19 were retrospectively recorded and analysed by using hospital information system data and an online questionnaire survey.
Setting:
China.
Participants:
222 participants aged 60 years or older from a health management centre.
Results:
Our findings revealed significant differences in the incidence (P = 0·03) and recurrent rate (P = 0·02) of Omicron COVID-19 among the three groups. Participants with lower 25(OH)D concentrations (< 20 ng/ml) exhibited higher rates of initial incidence and reoccurrence and a greater percentage of severe and critical cases. Conversely, individuals with 25(OH)D concentrations ≥ 30 ng/ml had a higher percentage of mild cases (P = 0·003). Binary and ordinal logistic regression models indicated that vitamin D supplementation was not a significant risk factor for COVID-19 outcomes.
Conclusions:
In the elderly population, pre-infection vitamin D deficiency was associated with increased susceptibility to incidence, severity of illness and reoccurrence rates of Omicron COVID-19.
Cardiometabolic diseases (CMDs) including heart disease, stroke, and type 2 diabetes have been individually linked to depression. However, their combined impact on depression risk is unclear. We aimed to examine the association between cardiometabolic multimorbidity and depression and explore the role of genetic background in this association.
Methods
Within the Swedish Twin Registry, 40,080 depression-free individuals (mean age 60 years) were followed for 18 years. Cardiometabolic multimorbidity was defined as having ≥2 CMDs. CMDs and depression were ascertained based on the National Patient Register. Cox regression was used to estimate the CMD-depression association in a classical cohort study design and a matched co-twin design involving 176 twin pairs. By comparing the associations between monozygotic and dizygotic co-twins, the contribution of genetic background was estimated.
Results
At baseline, 4809 (12.0%) participants had one CMD and 969 (2.4%) had ≥2 CMDs. Over the follow-up period, 1361 participants developed depression. In the classical cohort design, the multi-adjusted hazard ratios (95% confidence interval [CIs]) of depression were 1.52 (1.31–1.76) for those with one CMD and 1.83 (1.29–2.58) for those with ≥2 CMDs. CMDs had a greater risk effect on depression if they developed in mid-life (<60 years) as opposed to late life (≥60 years). In matched co-twin analysis, the CMD-depression association was significant among dizygotic twins (HR = 1.63, 95% CI, 1.02–2.59) but not monozygotic twins (HR = 0.90, 95% CI, 0.32–2.51).
Conclusions
Cardiometabolic multimorbidity is associated with an elevated risk of depression. Genetic factors may contribute to the association between CMDs and depression.
The unmanned aerial vehicle (UAV) system for composite vertical take-off and landing (VTOL) is a complex, highly coupled, and nonlinear system which is sensitive to external disturbances and model uncertainties. The composite VTOL UAV system consists of a multi-rotor section and a fixed-wing section. To improve observation accuracy, the compensation function observer (CFO) uses a new structure that includes velocity information. The CFO is utilised to estimate the uncertainty and the external disturbances of the system model, which performs superior estimation accuracy compared to the extended state observer (ESO). In the modeling process of the VTOL UAV, the aerodynamic moment is calculated by means of the cross-product operation of force and force arm, which solves the problem of over-reliance on aerodynamic parameters in the traditional modeling approach. The controlled object is refined by CFO, and model compensation control (MCC) is used to realise the velocity and attitude control of the composite VTOL. The numerical simulation of MATLAB/Simulink and hardware-in-loop simulation (HIL) of Rflysim were implemented, and which were used to compare the MCC, active disturbance rejection control (ADRC), and proportion integration differentiation (PID). The simulation results confirm the superiority of MCC in controlling composite VTOL UAVs in terms of anti-disturbance and tracking speed.
Cognitive reserve (CR) has been linked to dementia, yet its influence on the risk of depression and related outcomes remains unknown. We aimed to examine the association of CR with depression and subsequent dementia or death, and to assess the extent to which CR is related to depression-free survival.
Methods
Within the UK Biobank, 436,232 participants free of depression and dementia were followed. A comprehensive CR indicator (low, moderate, and high) was created using latent class analysis based on information on education, occupation, mentally passive sedentary behavior, social connection, confiding with others, and leisure activities. Depression, dementia, and survival status were ascertained through self-reported medical history and/or linkages to medical records. Data were analyzed using multi-state Markov model and Laplace regression.
Results
Over a median follow-up of 12.96 years, 16,560 individuals developed depression (including 617 with subsequent dementia) and 28,655 died. In multivariable multi-state models, compared with low CR, high CR was associated with lower risk of depression (hazard ratio 0.53 [95% confidence interval 0.51–0.56]) and lower risk of post-depression dementia (0.55 [0.34–0.88]) or death (0.69 [0.55–0.88]) in middle-aged adults (aged <60 years). In Laplace regression, the depression-free survival time was prolonged by 2.77 (2.58–2.96) years in participants with high compared to low CR.
Conclusions
High CR is associated with lower risks of depression and subsequent transitions to dementia and death, particularly in middle age. High CR may prolong depression-free survival. Our findings highlight the importance of enhancing CR in the prevention and prognosis of depression.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
The familiar process of bubbles generated via breaking waves in the ocean is foundational to many natural and industrial applications. In this process, large pockets of entrained gas are successively fragmented by the ambient turbulence into smaller and smaller bubbles. The key question is how long it takes for the bubbles to reach terminal sizes for a given system. Despite decades of effort, the reported breakup time from multiple experiments differs significantly. Here, to reconcile those results, rather than focusing on one scale, we measure multiple time scales associated with the process through a unique experiment that resolves bubbles’ local deformation and curvature. The results emphasize that the scale separation among various time scales is controlled by the Weber number, similar to how the Reynolds number determines the scale separation in single-phase turbulence, but shows a distinct transition at a critical Weber number.
It remains unclear whether cognitive reserve can attenuate dementia risk among people with different genetic predispositions.
Aims
We aimed to examine the association between cognitive reserve and dementia, and further to explore whether and to what extent cognitive reserve may modify the risk effect of genetic factors on dementia.
Method
Within the UK Biobank, 210 631 dementia-free participants aged ≥60 years were followed to detect incident dementia. Dementia was ascertained through medical and death records. A composite cognitive reserve indicator encompassing education, occupation and multiple cognitively loaded activities was created using latent class analysis, categorised as low, moderate and high level. Polygenic risk scores for Alzheimer's disease were constructed to evaluate genetic risk for dementia, categorised by tertiles (high, moderate and low). Data were analysed using Cox models and Laplace regression.
Results
In multi-adjusted Cox models, the hazard ratio (HR) of dementia was 0.66 (95% confidence interval (CI) 0.61–0.70) for high cognitive reserve compared with low cognitive reserve. In Laplace regression, participants with high cognitive reserve developed dementia 1.62 (95% CI 1.35–1.88) years later than those with low cognitive reserve. In stratified analysis by genetic risk, high cognitive reserve was related to more than 30% lower dementia risk compared with low cognitive reserve in each stratum. There was an additive interaction between low cognitive reserve and high genetic risk on dementia (attributable proportion 0.24, 95% CI 0.17–0.31).
Conclusions
High cognitive reserve is associated with reduced risk of dementia and may delay dementia onset. Genetic risk for dementia may be mitigated by high cognitive reserve. Our findings underscore the importance of enhancing cognitive reserve in dementia prevention.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
This study aims to explore the evaluation of lactic acid (Lac) and neutrophil gelatinase-associated lipocalin (NGAL) on the condition and prognosis of patients with diquat (DQ) poisoning.
Methods:
A total of 79 cases of DQ poisoning treated in one hospital from January 2019 through February 2023 were included: 10 cases of mild poisoning, 49 cases of moderate to severe poisoning, and 20 cases of fulminant poisoning. According to the Kidney Disease: Improving Global Outcomes-acute kidney injury (KDIGO-AKI) criteria, the patients were divided into 60 cases in the AKI group and 19 cases in the non-acute kidney injury (NAKI) group. According to the AKI diagnostic indicators, AKI patients were divided into Grade I, Grade II, and Grade III. According to prognosis, the patients were divided into survivor group and non-survivor group. During the same period, 30 healthy subjects were selected as the healthy group. The changes of blood Lac, NGAL, cystatin C (CysC), and serum creatinine (Scr) levels of patients were detected, the 28-day survival of patients was recorded, and the correlation between blood Lac, NGAL levels, and renal injury grade in patients with AKI caused by DQ poisoning was analyzed. The receiver operator characteristic (ROC) curve was used to evaluate the predictive value and prognostic value of Lac, NGAL, and their combination in patients with AKI caused by DQ poisoning.
Results:
There were significant differences in AKI grade, Lac, NGAL, CysC, and Scr levels among different degrees of poisoning groups (P < .05). There were significant differences in the levels of Lac, NGAL, CysC, and Scr among patients with different AKI grades (P < .05). The levels of Lac, NGAL, CysC, and Scr in the survivor group were significantly lower than those in the non-survivor group (P < .05). The blood Lac and NGAL levels were positively correlated with AKI grades in patients with DQ poisoning (r = 0.752, 0.836; P = .000, .000). The combined detection of blood Lac and NGAL had higher predictive value for AKI and assessed value for death in DQ poisoning than either of them alone.
Conclusion:
The combined detection of Lac and NGAL have a certain clinical value in AKI grading and evaluating AKI prognosis caused by DQ poisoning.
Obsessive–compulsive disorder (OCD) is a classic disorder on the compulsivity spectrum, with diverse comorbidities. In the current study, we sought to understand OCD from a dimensional perspective by identifying multimodal neuroimaging patterns correlated with multiple phenotypic characteristics within the striatum-based circuits known to be affected by OCD.
Methods
Neuroimaging measurements of local functional and structural features and clinical information were collected from 110 subjects, including 51 patients with OCD and 59 healthy control subjects. Linked independent component analysis (LICA) and correlation analysis were applied to identify associations between local neuroimaging patterns across modalities (including gray matter volume, white matter integrity, and spontaneous functional activity) and clinical factors.
Results
LICA identified eight multimodal neuroimaging patterns related to phenotypic variations, including three related to symptoms and diagnosis. One imaging pattern (IC9) that included both the amplitude of low-frequency fluctuation measure of spontaneous functional activity and white matter integrity measures correlated negatively with OCD diagnosis and diagnostic scales. Two imaging patterns (IC10 and IC27) correlated with compulsion symptoms: IC10 included primarily anatomical measures and IC27 included primarily functional measures. In addition, we identified imaging patterns associated with age, gender, and emotional expression across subjects.
Conclusions
We established that data fusion techniques can identify local multimodal neuroimaging patterns associated with OCD phenotypes. The results inform our understanding of the neurobiological underpinnings of compulsive behaviors and OCD diagnosis.