We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct an Euler system—a compatible family of global cohomology classes—for the Galois representations appearing in the geometry of Hilbert modular surfaces. If a conjecture of Bloch and Kato on injectivity of regulator maps holds, this Euler system is nontrivial, and we deduce bounds towards the Iwasawa main conjecture for these Galois representations.
We study the asymptotic behaviour of the Bloch–Kato–Shafarevich–Tate group of a modular form $f$ over the cyclotomic ${{\mathbb{Z}}_{p}}$-extension of $\mathbb{Q}$ under the assumption that $f$ is non-ordinary at $p$. In particular, we give upper bounds of these groups in terms of Iwasawa invariants of Selmer groups defined using $p$-adic Hodge Theory. These bounds have the same form as the formulae of Kobayashi, Kurihara, and Sprung for supersingular elliptic curves.
We construct an Euler system attached to a weight 2 modular form twisted by a Grössencharacter of an imaginary quadratic field $K$, and apply this to bounding Selmer groups.
We study the Selmer group of an elliptic curve over an admissible p-adic Lie extension of a number field F. We give a formula for the Akashi series attached to this module, in terms of the corresponding objects for the cyclotomic ℤp-extension and certain correction terms. This extends our earlier work [16], in particular since it applies to elliptic curves having split multiplicative reduction at some primes above p, in which case the Akashi series can have additional zeros.
Let $E$ be an elliptic curve defined over a number field $F$. The paper concerns the structure of the $p^{\backslash}\infty$-Selmer group of $E$ over $p$-adic Lie extensions $F_{\backslash}\infty$ of $F$ which are obtained by adjoining to $F$ the $p$-division points of an abelian variety $A$ defined over $F$. The main focus of the paper is the calculation of the Gal$(F_{\backslash}\infty/F)$-Euler characteristic of the $p^{\backslash}\infty$-Selmer group of $E$. The main theory is illustrated with the example of an elliptic curve of conductor 294.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.