We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Optimising stellarators for quasisymmetry leads to strongly reduced collisional transport and energetic particle losses compared with unoptimised configurations. Although stellarators with precise quasisymmetry have been obtained in the past, it remains unclear how broad the parameter space is where good quasisymmetry may be achieved. We study the range of aspect ratios and rotational transform values for which stellarators with excellent quasisymmetry on the boundary can be obtained. A large number of Fourier harmonics is included in the boundary representation, which is made computationally tractable by the use of adjoint methods to enable fast gradient-based optimisation and by the direct optimisation of vacuum magnetic fields, which converge more robustly compared with solutions from magnetohydrostatics. Several novel configurations are presented, including stellarators with record levels of quasisymmetry on a surface, three field period quasiaxisymmetric stellarators with substantial magnetic shear, and compact quasisymmetric stellarators at low aspect ratios similar to tokamaks.
In November 2023, the Department of Health and Social Care published guidance, entitled ‘Baroness Hollins’ Final Report: My Heart Breaks – Solitary Confinement in Hospital Has no Therapeutic Benefit for People with a Learning Disability and Autistic People’. The report's commendable analysis of the problems and identification of the areas where practice should be improved is unfortunately not matched by many of its recommendations, which appear to be contrary to evidence-based approaches. The concerns are wide-ranging, from the use of the term ‘solitary confinement’ for current long-term segregation (LTS) and seclusion, to presumption that all LTS and seclusion is bad, to holding clinicians (mainly psychiatrists) responsible for events beyond their locus of control. Importantly, there is a no guidance on how to practically deliver the recommendations in an evidence-based manner. This Feature critically appraises the report, to provide a comprehensive summary outlining potential positive impacts, identifying specific concerns and reflecting on best practice going forward.
The Black-cheeked Lovebird Agapornis nigrigenis has a highly restricted range in dry south-western Zambia, where its distribution is clumped and localised in association with mopane Colophospermum mopane woodland and permanent water pools. Fieldwork and monitoring over 30 months between December 2018 and October 2021 established that the lovebirds’ usage of pools for drinking was higher towards the centre of the bird’s distribution and influenced by the pools’ proximity to mopane woodlands, surrounding tree cover, and level of human activity. Of the four pool types available for use by lovebirds (i.e. mopane, grassland, river, and artificial), mopane and grassland pools were disproportionally susceptible to drying out in the dry season, hence showed greater variation in numbers of visiting birds compared with the other two types. Lovebirds showed a preference for pools with a perimeter of <50 m and tended to avoid those with a perimeter >100 m, consistent with a positive association between pool size and human activity. Convergence between humans and lovebirds in dependence on water resources and mopane woodland points to the need to find ways to overcome potential conflicts. Such ways include creating small, shallow-sided, undisturbed pools in or near mopane woodland, extending water retention in existing mopane pools, and enhancing the capacity of artificial pools to meet the needs of the lovebirds.
Maternal diet may modulate human milk microbiota, but the effects of nutritional supplements are unknown. We examined the associations of prenatal diet and supplement use with milk microbiota composition. Mothers reported prenatal diet intake and supplement use using self-administered food frequency and standardised questionnaires, respectively. The milk microbiota was profiled using 16S rRNA gene sequencing. Associations of prenatal diet quality, dietary patterns, and supplement use with milk microbiota diversity and taxonomic structure were examined using Wilcoxon signed-rank tests and multivariable models adjusting for relevant confounders. A subset of 645 mothers participating in the CHILD Cohort Study (originally known as the Canadian Healthy Infant Longitudinal Development Study) provided one milk sample between 2 and 6 months postpartum and used prenatal multivitamin supplements ≥4 times a week. After adjusting for confounders, vitamin C supplement use was positively associated with milk bacterial Shannon diversity (β = 0.18, 95% CI = 0.05, 0.31) and Veillonella and Granulicatella relative abundance (β = 0.54; 95% CI = 0.05, 1.03 and β = 0.44; 95% CI = 0.04, 0.84, respectively), and negatively associated with Finegoldia relative abundance (β = –0.31; 95% CI = –0.63, –0.01). Fish oil supplement use was positively associated with Streptococcus relative abundance (β = 0.26; 95% CI = 0.03, 0.50). Prenatal diet quality and dietary patterns were not associated with milk microbiota composition. Prenatal vitamin C and fish oil supplement use were associated with differences in the milk microbiota composition. Future studies are needed to confirm our findings and elucidate mechanisms linking maternal supplement use to milk microbiota and child health.
The global increase in observed forest dieback, characterized by the death of tree foliage, heralds widespread decline in forest ecosystems. This degradation causes significant changes to ecosystem services and functions, including habitat provision and carbon sequestration, which can be difficult to detect using traditional monitoring techniques, highlighting the need for large-scale and high-frequency monitoring. Contemporary developments in the instruments and methods to gather and process data at large scales mean this monitoring is now possible. In particular, the advancement of low-cost drone technology and deep learning on consumer-level hardware provide new opportunities. Here, we use an approach based on deep learning and vegetation indices to assess crown dieback from RGB aerial data without the need for expensive instrumentation such as LiDAR. We use an iterative approach to match crown footprints predicted by deep learning with field-based inventory data from a Mediterranean ecosystem exhibiting drought-induced dieback, and compare expert field-based crown dieback estimation with vegetation index-based estimates. We obtain high overall segmentation accuracy (mAP: 0.519) without the need for additional technical development of the underlying Mask R-CNN model, underscoring the potential of these approaches for non-expert use and proving their applicability to real-world conservation. We also find that color-coordinate based estimates of dieback correlate well with expert field-based estimation. Substituting ground truth for Mask R-CNN model predictions showed negligible impact on dieback estimates, indicating robustness. Our findings demonstrate the potential of automated data collection and processing, including the application of deep learning, to improve the coverage, speed, and cost of forest dieback monitoring.
Shark vertebrae and their centra (vertebral bodies) are high-performance structures able to survive millions of cycles of high amplitude strain despite lacking a repair mechanism for accumulating damage. Shark centra consist of mineralized cartilage, a biocomposite of bioapatite (bAp), and collagen, and the nanocrystalline bAp's contribution to functionality remains largely uninvestigated. Using the multiple detector energy-dispersive diffraction (EDD) system at 6-BM-B, the Advanced Photon Source, and 3D tomographic sampling, the 3D functionality of entire centra were probed. Immersion in ethanol vs phosphate-buffered saline produces only small changes in bAp d-spacing within a great hammerhead centrum. EDD mapping under in situ loading was performed an entire blue shark centrum, and 3D maps of bAp strain showed the two structural zones of the centrum, the corpus calcareum and intermedialia, contained opposite-signed strains approaching 0.5%, and application of ~8% nominal strain did not alter these strain magnitudes and their spatial distribution.
A theory is presented for wave-driven propulsion of floating bodies driven into oscillation at the fluid interface. By coupling the equations of motion of the body to a quasipotential flow model of the fluid, we derive expressions for the drift speed and propulsive thrust of the body which in turn are shown to be consistent with global momentum conservation. We explore the efficacy of our model in describing the motion of SurferBot (Rhee et al., Bioinspir. Biomim., vol. 17, issue 5, 2022), demonstrating close agreement with the experimentally determined drift speed and oscillatory dynamics. The efficiency of wave-driven propulsion is then computed as a function of driving oscillation frequency and the forcing location, revealing optimal values for both of these parameters which await confirmation in experiments. A comparison with other modes of locomotion and applications of our model with competitive water sports is discussed in conclusion.
We characterised the soils and vegetation in 15 sets of four quadrats on and around mounds of Macrotermes annandalei (Isoptera, Macrotermitinae) on a plain of deep dystric clay over limestone in Deciduous Dipterocarp Forest in Northern Thailand. Termites have excavated the mounds from the deep calcareous substrate. The mound soils have darker subsoils, larger contents of clays and exchangeable cations, and higher pH values than the surrounding dystric clay loams. The thickets on the mounds are visually different from the surrounding Deciduous Dipterocarp Forest. They have few dipterocarps and are floristically similar to the regionally important Mixed Deciduous Forest. The clear visual differences are confirmed by floristic similarity, cluster, and canonical correspondence analyses for each of the tree, sapling and seedling size classes. The differences between the mound clays and surrounding red clay loams and the associations between soil and forest types are confirmed by ‘t tests’ and the significant correlations of the soil base status with the main floristic axis of the canonical correspondence analyses. Soil variability due to termites and other agents of pedoturbation can significantly contribute to short-range floristic and structural diversity in some dry tropical forests.
Boundary-layer disturbances are analysed on a $5^{\circ }$ half-angle blunted cone in Mach 5, high-enthalpy flow ($h_0 = 9\ {\rm MJ}\ {\rm kg}^{-1}$) with a low wall-to-edge temperature ratio, $T_w/T_e = 0.18$. Schlieren and focused laser differential interferometry (FLDI) are utilized to assess the structures and frequency content associated with disturbances. Wave packets are identified from bursts of modal content on time-resolved spectrograms. Bandpass filtering, proper orthogonal decomposition (POD) and space–time POD are then applied to the schlieren data. Bandpass filtering suggests the presence of wave packet dispersion and elongation indicative of slow-acoustic-wave synchronization. Modal reconstruction techniques indicate the radiation of content outside the boundary layer and distinct orientation changes within disturbances, potentially the first experimental evidence of the supersonic-mode instability in such a flow field. Cross-bicoherence computations are carried out for discrete time segments of data from both schlieren and FLDI data. They demonstrate that the most dominant nonlinear interactions are the fundamental–first-harmonic and the fundamental–low-frequency interactions.