We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A number of studies have investigated white matter abnormalities in patients with bipolar disorder (BD) using diffusion tensor imaging. However, tractography studies yielded heterogeneous results partly due to small sample sizes.
Aims:
In this work we aimed to study white matter abnormalities using whole-brain tractography in a large multicenter sample of patients with BD I with and without psychotic features.
Objectives:
To compare mean generalized fractional anisotropy (GFA) along deep white matter tracts between patients with BD with a positive history of psychosis during illness phases, no such history and healthy controls.
Methods:
We acquired diffusion-weighted MRI for 118 patients with BD I and 86 healthy controls using the same acquisition parameters and scanning hardware. We used Q-ball imaging tractography and an automatized segmentation technique to reconstruct 22 known deep white matter tracts and to obtain the mean GFA along each tract.
Results:
Patients with BD had lower GFA values than controls along the corpus callosum (body and splenium), the left cingulum and the left arcuate fasciculus, when controlling for age, gender and acquisition site. All results with an exception for the long fibers of the left cingulum were driven by patients with a positive history of psychotic symptoms.
Conclusions:
We demonstrated a reduced integrity of interhemispheric, limbic and arcuate white matter tracts in patients with BD I. Further, interhemispheric pathways were more disrupted in patients with psychotic symptoms, underscoring the role of interhemispheric connectivity in the pathophysiology of BD with psychosis.
Lithium (Li) is the gold standard treatment for bipolar disorder (BD). However, its mechanisms of action remain unknown but include neurotrophic effects. We here investigated the influence of Li on cortical and local grey matter (GM) volumes in a large international sample of patients with BD and healthy controls (HC).
Methods
We analyzed high-resolution T1-weighted structural magnetic resonance imaging scans of 271 patients with BD type I (120 undergoing Li) and 316 HC. Cortical and local GM volumes were compared using voxel-wise approaches with voxel-based morphometry and SIENAX using FSL. We used multiple linear regression models to test the influence of Li on cortical and local GM volumes, taking into account potential confounding factors such as a history of alcohol misuse.
Results
Patients taking Li had greater cortical GM volume than patients without. Patients undergoing Li had greater regional GM volumes in the right middle frontal gyrus, the right anterior cingulate gyrus, and the left fusiform gyrus in comparison with patients not taking Li.
Conclusions
Our results in a large multicentric sample support the hypothesis that Li could exert neurotrophic and neuroprotective effects limiting pathological GM atrophy in key brain regions associated with BD.
Identifying youth who may engage in future substance use could facilitate early identification of substance use disorder vulnerability. We aimed to identify biomarkers that predicted future substance use in psychiatrically un-well youth.
Method
LASSO regression for variable selection was used to predict substance use 24.3 months after neuroimaging assessment in 73 behaviorally and emotionally dysregulated youth aged 13.9 (s.d. = 2.0) years, 30 female, from three clinical sites in the Longitudinal Assessment of Manic Symptoms (LAMS) study. Predictor variables included neural activity during a reward task, cortical thickness, and clinical and demographic variables.
Results
Future substance use was associated with higher left middle prefrontal cortex activity, lower left ventral anterior insula activity, thicker caudal anterior cingulate cortex, higher depression and lower mania scores, not using antipsychotic medication, more parental stress, older age. This combination of variables explained 60.4% of the variance in future substance use, and accurately classified 83.6%.
Conclusions
These variables explained a large proportion of the variance, were useful classifiers of future substance use, and showed the value of combining multiple domains to provide a comprehensive understanding of substance use development. This may be a step toward identifying neural measures that can identify future substance use disorder risk, and act as targets for therapeutic interventions.
Neuroimaging measures of behavioral and emotional dysregulation can yield biomarkers denoting developmental trajectories of psychiatric pathology in youth. We aimed to identify functional abnormalities in emotion regulation (ER) neural circuitry associated with different behavioral and emotional dysregulation trajectories using latent class growth analysis (LCGA) and neuroimaging.
Method
A total of 61 youth (9–17 years) from the Longitudinal Assessment of Manic Symptoms study, and 24 healthy control youth, completed an emotional face n-back ER task during scanning. LCGA was performed on 12 biannual reports completed over 5 years of the Parent General Behavior Inventory 10-Item Mania Scale (PGBI-10M), a parental report of the child's difficulty regulating positive mood and energy.
Results
There were two latent classes of PGBI-10M trajectories: high and decreasing (HighD; n = 22) and low and decreasing (LowD; n = 39) course of behavioral and emotional dysregulation over the 12 time points. Task performance was >89% in all youth, but more accurate in healthy controls and LowD versus HighD (p < 0.001). During ER, LowD had greater activity than HighD and healthy controls in the dorsolateral prefrontal cortex, a key ER region, and greater functional connectivity than HighD between the amygdala and ventrolateral prefrontal cortex (p's < 0.001, corrected).
Conclusions
Patterns of function in lateral prefrontal cortical–amygdala circuitry in youth denote the severity of the developmental trajectory of behavioral and emotional dysregulation over time, and may be biological targets to guide differential treatment and novel treatment development for different levels of behavioral and emotional dysregulation in youth.
Differentiating bipolar from recurrent unipolar depression is a major clinical challenge. In 18 healthy females and 36 females in a depressive episode – 18 with bipolar disorder type I, 18 with recurrent unipolar depression – we applied pattern recognition analysis using subdivisions of anterior cingulate cortex (ACC) blood flow at rest, measured with arterial spin labelling. Subgenual ACC blood flow classified unipolar v. bipolar depression with 81% accuracy (83% sensitivity, 78% specificity).
The aim of this study was to apply indicators for monitoring the impacts of harvest in a recreational surf clam fishery. We investigated trends in abundance, biomass and size structure and proportion of sexual maturity for the pipi (Donax deltoides) in Venus Bay, Australia. The surf clam stock was sampled during the peak harvesting season in the Australian summer (November to February) at four sites exposed to varying degrees of recreational harvest. Sampling was based on three transects at each site; with 0.027 m3 (0.3 m × 0.3 m × 0.3 m) quadrats stratified within transects by tidal position. Restricted maximum likelihood mixed model analyses were used to examine fixed effect combinations after including a priori random effect for transect within site. Results demonstrated that relative abundance varied significantly (P = 0.0090) among sampling months but not among sites. Relative abundance declined across the peak summer harvest season. The proportion of maturity varied significantly (P = 0.00026) among sites whereas relative biomass varied significantly (P = 0.0043) among months by sites. Relative biomass and the proportion of maturity were considerably higher at the site exposed to minimal harvest compared to other sites. This study demonstrates that a suite of indictors including biomass, size–frequency and proportion of maturity are likely to provide a more accurate assessment of stock status in recreationally fished surf clam populations, than relative abundance. This highlights the need to develop methods to estimate relative biomass in surf clam populations that are not exploited commercially.
The amygdala plays a central role in the fronto-limbic network involved in the processing of emotions. Structural and functional abnormalities of the amygdala have recently been found in schizophrenia, although there are still contradictory results about its reduced or preserved volumes.
Method
In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed structural magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI), exploring amygdalar volume and microstructural changes in 69 patients with schizophrenia and 72 matched healthy subjects, relating these indices to psychopathological measures.
Results
Measuring water diffusivity, the apparent diffusion coefficients (ADCs) for the right amygdala were found to be significantly greater in patients with schizophrenia compared with healthy controls, with a trend for abnormally reduced volumes. Also, significant correlations between mood symptoms and amygdalar volumes were found in schizophrenia.
Conclusions
We therefore provide evidence that schizophrenia is associated with disrupted tissue organization of the right amygdala, despite partially preserved size, which may ultimately lead to abnormal emotional processing in schizophrenia. This result confirms the major role of the amygdala in the pathophysiology of schizophrenia and is discussed with respect to amygdalar structural and functional abnormalities found in patients suffering from this illness.
Several, although not all, of the previous small diffusion-weighted imaging (DWI) studies have shown cortical white-matter disruption in schizophrenia.
Aims
To investigate cortical white-matter microstructure with DWI in a large community-based sample of people with schizophrenia.
Method
Sixty-eight people with schizophrenia and 64 healthy controls underwent a session of DWI to obtain the apparent diffusion coefficient (ADC) of white-matter water molecules. Regions of interest were placed in cortical lobes.
Results
Compared with controls, the schizophrenia group had significantly greater ADCs in frontal, temporal and occipital white matter (analysis of covariance, P < 0.05).
Conclusions
Our findings confirm the presence of cortical white-matter microstructure disruption in frontal and temporo-occipital lobes in the largest sample of people with schizophrenia thus for studied with this technique. Future brain imaging studies, together with genetic investigations, should further explore white-matter integrity and genes encoding myelin-related protein expression in people with first-episode schizophrenia and those at high risk of developing the disorder.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.