We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Educational attainment (EduA) is correlated with life outcomes, and EduA itself is influenced by both cognitive and non-cognitive factors. A recent study performed a ‘genome-wide association study (GWAS) by subtraction,’ subtracting genetic effects for cognitive performance from an educational attainment GWAS to create orthogonal ‘cognitive’ and ‘non-cognitive’ factors. These cognitive and non-cognitive factors showed associations with behavioral health outcomes in adults; however, whether these correlations are present during childhood is unclear.
Methods
Using data from up to 5517 youth (ages 9–11) of European ancestry from the ongoing Adolescent Brain Cognitive DevelopmentSM Study, we examined associations between polygenic scores (PGS) for cognitive and non-cognitive factors and cognition, risk tolerance, decision-making & personality, substance initiation, psychopathology, and brain structure (e.g. volume, fractional anisotropy [FA]). Within-sibling analyses estimated whether observed genetic associations may be consistent with direct genetic effects.
Results
Both PGSs were associated with greater cognition and lower impulsivity, drive, and severity of psychotic-like experiences. The cognitive PGS was also associated with greater risk tolerance, increased odds of choosing delayed reward, and decreased likelihood of ADHD and bipolar disorder; the non-cognitive PGS was associated with lack of perseverance and reward responsiveness. Cognitive PGS were more strongly associated with larger regional cortical volumes; non-cognitive PGS were more strongly associated with higher FA. All associations were characterized by small effects.
Conclusions
While the small sizes of these associations suggest that they are not effective for prediction within individuals, cognitive and non-cognitive PGS show unique associations with phenotypes in childhood at the population level.
Although the link between alcohol involvement and behavioral phenotypes (e.g. impulsivity, negative affect, executive function [EF]) is well-established, the directionality of these associations, specificity to stages of alcohol involvement, and extent of shared genetic liability remain unclear. We estimate longitudinal associations between transitions among alcohol milestones, behavioral phenotypes, and indices of genetic risk.
Methods
Data came from the Collaborative Study on the Genetics of Alcoholism (n = 3681; ages 11–36). Alcohol transitions (first: drink, intoxication, alcohol use disorder [AUD] symptom, AUD diagnosis), internalizing, and externalizing phenotypes came from the Semi-Structured Assessment for the Genetics of Alcoholism. EF was measured with the Tower of London and Visual Span Tasks. Polygenic scores (PGS) were computed for alcohol-related and behavioral phenotypes. Cox models estimated associations among PGS, behavior, and alcohol milestones.
Results
Externalizing phenotypes (e.g. conduct disorder symptoms) were associated with future initiation and drinking problems (hazard ratio (HR)⩾1.16). Internalizing (e.g. social anxiety) was associated with hazards for progression from first drink to severe AUD (HR⩾1.55). Initiation and AUD were associated with increased hazards for later depressive symptoms and suicidal ideation (HR⩾1.38), and initiation was associated with increased hazards for future conduct symptoms (HR = 1.60). EF was not associated with alcohol transitions. Drinks per week PGS was linked with increased hazards for alcohol transitions (HR⩾1.06). Problematic alcohol use PGS increased hazards for suicidal ideation (HR = 1.20).
Conclusions
Behavioral markers of addiction vulnerability precede and follow alcohol transitions, highlighting dynamic, bidirectional relationships between behavior and emerging addiction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.