We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To compare antimicrobial prescribing practices in Australian hematology and oncology patients to noncancer acute inpatients and to identify targets for stewardship interventions.
Design:
Retrospective comparative analysis of a national prospectively collected database.
Methods:
Using data from the 2014–2018 annual Australian point-prevalence surveys of antimicrobial prescribing in hospitalized patients (ie, Hospital National Antimicrobial Prescribing Survey called Hospital NAPS), the most frequently used antimicrobials, their appropriateness, and guideline concordance were compared among hematology/bone marrow transplant (hemBMT), oncology, and noncancer inpatients in the setting of treatment of neutropenic fever and antibacterial and antifungal prophylaxis.
Results:
In 454 facilities, 94,226 antibiotic prescriptions for 62,607 adult inpatients (2,230 hemBMT, 1,824 oncology, and 58,553 noncancer) were analyzed. Appropriateness was high for neutropenic fever management across groups (83.4%–90.4%); however, hemBMT patients had high rates of carbapenem use (111 of 746 prescriptions, 14.9%), and 20.2% of these prescriptions were deemed inappropriate. Logistic regression demonstrated that hemBMT patients were more likely to receive appropriate antifungal prophylaxis compared to oncology and noncancer patients (adjusted OR, 5.3; P < .001 for hemBMT compared to noncancer patients). Oncology had a low rate of antifungal prophylaxis guideline compliance (67.2%), and incorrect dosage and frequency were key factors. Compared to oncology patients, hemBMT patients were more likely to receive appropriate nonsurgical antibacterial prophylaxis (aOR, 8.4; 95% CI, 5.3–13.3; P < .001). HemBMT patients were also more likely to receive appropriate nonsurgical antibacterial prophylaxis compared to noncancer patients (OR, 3.1; 95% CI, 1.9–5.0; P < .001). However, in the Australian context, the hemBMT group had higher than expected use of fluoroquinolone prophylaxis (66 of 831 prescriptions, 8%).
Conclusions:
This study demonstrates why separate analysis of hemBMT and oncology populations is necessary to identify specific opportunities for quality improvement in each patient group.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.