We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the efficacy of a new continuously active disinfectant (CAD) to decrease bioburden on high-touch environmental surfaces compared to a standard disinfectant in the intensive care unit.
Design:
A single-blind randomized controlled trial with 1:1 allocation.
Setting:
Medical intensive care unit (MICU) at an urban tertiary-care hospital.
Participants:
Adult patients admitted to the MICU and on contact precautions.
Intervention:
A new CAD wipe used for daily cleaning.
Methods:
Samples were collected from 5 high-touch environmental surfaces before cleaning and at 1, 4, and 24 hours after cleaning. The primary outcome was the mean bioburden 24 hours after cleaning. The secondary outcome was the detection of any epidemiologically important pathogen (EIP) 24 hours after cleaning.
Results:
In total, 843 environmental samples were collected from 43 unique patient rooms. At 24 hours, the mean bioburden recovered from the patient rooms cleaned with the new CAD wipe (intervention) was 52 CFU/mL, and the mean bioburden was 92 CFU/mL in the rooms cleaned the standard disinfectant (control). After log transformation for multivariable analysis, the mean difference in bioburden between the intervention and control arm was −0.59 (95% CI, −1.45 to 0.27). The odds of EIP detection were 14% lower in the rooms cleaned with the CAD wipe (OR, 0.86; 95% CI, 0.31–2.32).
Conclusions:
The bacterial bioburden and odds of detection of EIPs were not statistically different in rooms cleaned with the CAD compared to the standard disinfectant after 24 hours. Although CAD technology appears promising in vitro, larger studies may be warranted to evaluate efficacy in clinical settings.
Hospital readmission is unsettling to patients and caregivers, costly to the healthcare system, and may leave patients at additional risk for hospital-acquired infections and other complications. We evaluated the association between comorbidities present during index coronavirus disease 2019 (COVID-19) hospitalization and the risk of 30-day readmission.
Design, setting, and participants:
We used the Premier Healthcare database to perform a retrospective cohort study of COVID-19 hospitalized patients discharged between April 2020 and March 2021 who were followed for 30 days after discharge to capture readmission to the same hospital.
Results:
Among the 331,136 unique patients in the index cohort, 36,827 (11.1%) had at least 1 all-cause readmission within 30 days. Of the readmitted patients, 11,382 (3.4%) were readmitted with COVID-19 as the primary diagnosis. In the multivariable model adjusted for demographics, hospital characteristics, coexisting comorbidities, and COVID-19 severity, each additional comorbidity category was associated with an 18% increase in the odds of all-cause readmission (adjusted odds ratio [aOR], 1.18; 95% confidence interval [CI], 1.17–1.19) and a 10% increase in the odds of readmission with COVID-19 as the primary readmission diagnosis (aOR, 1.10; 95% CI, 1.09–1.11). Lymphoma (aOR, 1.86; 95% CI, 1.58–2.19), renal failure (aOR, 1.32; 95% CI, 1.25–1.40), and chronic lung disease (aOR, 1.29; 95% CI, 1.24–1.34) were most associated with readmission for COVID-19.
Conclusions:
Readmission within 30 days was common among COVID-19 survivors. A better understanding of comorbidities associated with readmission will aid hospital care teams in improving postdischarge care. Additionally, it will assist hospital epidemiologists and quality administrators in planning resources, allocating staff, and managing bed-flow issues to improve patient care and safety.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.