We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Improving plant resistance against Fusarium wilt (FW) is key to sustaining chickpea production worldwide. Given this, the current study tested a set of 75 FW-responsive chickpea breeding lines including checks in a wilt-sick plot for two consecutive years (2016 and 2017). Genetic diversity analysis using 75 simple sequence repeats (SSRs) revealed a total of 267 alleles with an average of 3.56 alleles per marker. The entire set was divided into two major classes based on clustering method and factorial analysis. Similarly, STRUCTURE analysis placed the 75 genotypes into three distinct sub-groups (K = 3). Marker-trait association (MTA) analysis using the generalized linear model approach revealed nine and eight significant MTAs for FW resistance in the years 2016 and 2017, respectively. Three significant MTAs were obtained for FW resistance following the mixed linear model approach for both years. The SSR markers CESSR433, NCPGR21 and ICCM0284 could be potentially employed for targeted and accelerated improvement of FW resistance in chickpea. To the best of our knowledge, this is the first report on association mapping of the genomic loci controlling FW (Foc2) resistance in chickpea.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.