We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The potential of chemically derived graphene as a solution-processable transparent conductive film has been explored. Synthesis of amine-functionalized graphene oxide was intended for its utilization in layer-by-layer assembly. Layer-by-layer assembly of graphene oxide was utilized to fabricate graphene based thin film in a scalable and highly reproducible way. It was found that optical transmittance and sheet resistance of the film decreases with an increase in number of LBL cycles in a reproducible way. The sheet resistance of LBL-assembled GO film improves by an order of magnitude at the same optical transparency due to more homogeneous coverage and better stacking of graphene flakes. Furthermore, we demonstrated the potential for a large-scale deposition of chemically derived graphene.
Spherical particles of ferrite (intermediate between Fe3O4 and γ-Fe2O3) were grown on seed crystals (∼9 nm) via the green rust route in an aqueous solution added with sucrose, which promotes spherical growth. By highly dispersing the seed crystals in an HNO3 solution, we could control the diameter of the particles over a wide range of 20–200 nm (geometric standard deviation: 1.1–1.4) by changing the amount of the seed crystals. At the beginning of the seed growth, clusters of the seed crystals were resolved into smaller clusters, each composed of a few seed crystals.
A room temperature scanning micro-Hall probe microscope (RT-SHPM) was used for imaging stray magnetic field fluctuations at the surfaces of strontium ferrite permanent magnets (SFM) in the presence of external bias fields. The RT-SHPM enables the extremely fast, non-invasive, and quantitative measurement of localized surface magnetic fields on the sub-micron-scale. A 0.8 × 0.8 μm2 GaAs/AlGaAs micro-Hall probe (300K Hall coefficient =0.3ω/G; field sensitivity=0.04 G/√Hz ) with an integrated STM tip for precise vertical positioning was used as a magnetic field sensor. External bias fields (Hex) of up to 2700 Oe were applied parallel to the easy and hard axes of thermally demagnetized SFMs. Sample areas of up to 50×50 μm were imaged at a height of 0.3 μm above the SFM surface for each Hex, with scan speeds of approximately one frame/second (128×128 pixels) enabling quasi-real time imaging in synchronization with bias field changes. RT-SHPM images of surfaces normal to the easy axis of demagnetized samples at Hex=0, clearly showed the presence of 8-15 μm sized domains and stray magnetic field fluctuations of ±200G; images of surfaces normal to the hard axis showed 20 μm sized domains with magnetic field fluctuations of ±100G. Pronounced domain movement and rotation was observed for surfaces normal to the easy axis at bias fields above 700 Oe applied along the easy axis. A good correlation was found between domain movement and vibrating sample magnetometer hysteresis measurements. The RT-SHPM system was demonstrated to be a valuable tool for the direct and non-invasive study of micro-magnetic phenomena in ferromagnetic materials.
The role of hydrogen (H) in carbon (C)-doped GaAs was examined by co-doping of C and H atoms using low-energy hydrocarbon (CH+ and CH3+) ions. Experiments were carried out using the combined ion beam and molecular beam epitaxy (CIBMBE) system. Samples were characterized by low-temperature photoluminescence at 2K and Hall effect measurements at room temperature. Results show that incorporated C atoms are optically and electrically activated as acceptors even by hydrocarbon ion impingement. The effect of H incorporation was found to be noticeable when impinged current density of CH3+ ion beam is high that produces equivalent net hole carrier concentration greater than ∼1018 cm−3
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.