We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Despite the multitude of clinical manifestations of post-acute sequelae of SARS-CoV-2 infection (PASC), studies applying statistical methods to directly investigate patterns of symptom co-occurrence and their biological correlates are scarce.
Methods
We assessed 30 symptoms pertaining to different organ systems in 749 adults (age = 55 ± 14 years; 47% female) during in-person visits conducted at 6–11 months after hospitalization due to coronavirus disease 2019 (COVID-19), including six psychiatric and cognitive manifestations. Symptom co-occurrence was initially investigated using exploratory factor analysis (EFA), and latent variable modeling was then conducted using Item Response Theory (IRT). We investigated associations of latent variable severity with objective indices of persistent physical disability, pulmonary and kidney dysfunction, and C-reactive protein and D-dimer blood levels, measured at the same follow-up assessment.
Results
The EFA extracted one factor, explaining 64.8% of variance; loadings were positive for all symptoms, and above 0.35 for 16 of them. The latent trait generated using IRT placed fatigue, psychiatric, and cognitive manifestations as the most discriminative symptoms (coefficients > 1.5, p < 0.001). Latent trait severity was associated with decreased body weight and poorer physical performance (coefficients > 0.240; p ⩽ 0.003), and elevated blood levels of C-reactive protein (coefficient = 0.378; 95% CI 0.215–0.541; p < 0.001) and D-dimer (coefficient = 0.412; 95% CI 0.123–0.702; p = 0.005). Results were similar after excluding subjects with pro-inflammatory comorbidities.
Conclusions
Different symptoms that persist for several months after moderate or severe COVID-19 may unite within one latent trait of PASC. This trait is dominated by fatigue and psychiatric symptoms, and is associated with objective signs of physical disability and persistent systemic inflammation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.