To improve the conversion efficiency of polymer photodetectors (PDs) fabricated by solution process, the properties of fluorene-type polymer photodetectors doped with iridium (Ir) and platinum (Pt) complexes were investigated. The devices based on poly(dioctylfluorene) and poly(dioctylfluorene-co-benzothiadiazole) (F8BT) had violet and blue sensitivity, respectively. Triplet materials can enhance the incident-photon-to-current conversion efficiency of the devices utilizing the fluorene-type polymers when their triplet levels are lower than the lowest excited singlet states of the host and higher than the lowest excited triplet states of the host. The transmission of a moving picture was successfully demonstrated using the bilayer F8BT device with green Ir complex as an opto-electrical conversion device. We demonstrate that the polymer PDs fabricated by solution process can be applied to short-range optical communication fields, such as opto-electrical conversion devices for optical links.