We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Antenatal multiple micronutrient supplements (MMS) are a cost-effective intervention to reduce adverse pregnancy and birth outcomes. However, the current WHO recommendation on the use of antenatal MMS is conditional, partly due to concerns about the effect on neonatal mortality in a subgroup of studies comparing MMS with iron and folic acid (IFA) supplements containing 60 mg of Fe. We aimed to assess the effect of MMS v. IFA on neonatal mortality stratified by Fe dose in each supplement.
Methods:
We updated the neonatal mortality analysis of the 2020 WHO guidelines using the generic inverse variance method and applied the random effects model to calculate the effect estimates of MMS v. IFA on neonatal mortality in subgroups of trials (n 13) providing the same or different amounts of Fe, that is, MMS with 60 mg of Fe v. IFA with 60 mg of Fe; MMS with 30 mg of Fe v. IFA with 30 mg of Fe; MMS with 30 mg of Fe v. IFA with 60 mg of Fe; and MMS with 20 mg of Fe v. IFA with 60 mg of Fe.
Results:
There were no statistically significant differences in neonatal mortality between MMS and IFA within any of the subgroups of trials. Analysis of MMS with 30 mg v. IFA with 60 mg of Fe (7 trials, 14 114 participants), yielded a non-significant risk ratio of 1·12 (95 % CI 0·83 to 1·50).
Conclusion:
Neonatal mortality did not differ between MMS and IFA regardless of Fe dose in either supplement.
The current study focuses on how adolescent girls in urban Indonesia accept technology in a social media (SM) campaign to promote healthy eating habits.
Design:
The study was a qualitative evaluation of the online campaign. In-depth interviews using semi-structured interview guidelines and focus group discussions were used to collect data. Data were analysed using a general inductive approach to provide simple and straightforward answers to our study questions.
Settings:
The study was conducted in two urban areas in Indonesia: Jakarta and Jogjakarta.
Participants:
Adolescent girls aged 16–19 years.
Results:
The SM campaign was perceived as beneficial for increasing participants’ knowledge. The campaign helped increase participants’ awareness of healthy diets and the health risks of unhealthy diets as well as increase their motivation to change their behaviour and avoid foods containing salt, sugar and excess fat. The participants perceived information from the online campaign as complete and trustworthy. Instagram was cited as the easiest platform to use, while the website was cited as having the most complete information. YouTube provided the best viewing experience but was considered a data-heavy platform. The barriers to change were perceptions of taste, limited choices for healthy but affordable ingredients and family-related factors.
Conclusions:
The online nutrition campaign was well accepted by Indonesian urban adolescent females and motivated them to act to protect their health. Future nutrition-related SM campaigns aimed at this demographic should focus on platforms with the greatest benefit and ease of use.
To formulate age- and context-specific complementary feeding recommendations (CFR) for infants and young children (IYC) and to compare the potential of filling population-level nutrient gaps using common sets of CFR across age groups.
Design
Linear programming was used to develop CFR using locally available and acceptable foods based on livelihood- and age-group-specific dietary patterns observed through 24 h dietary recalls. Within each livelihood group, the nutrient potential of age-group-specific v. consolidated CFR across the three age groups was tested.
Setting
Three food-insecure counties in northern Kenya; namely, settled communities from Isiolo (n 300), pastoralist communities from Marsabit (n 283) and agro-pastoralist communities from Turkana (n 299).
Subjects
Breast-fed IYC aged 6–23 months (n 882).
Results
Age-specific CFR could achieve adequacy for seven to nine of eleven modelled micronutrients, except among 12–23-month-old children in agro-pastoralist communities. Contribution of Fe, Zn and niacin remained low for most groups, and thiamin, vitamin B6 and folate for some groups. Age-group-consolidated CFR could not reach the same level of nutrient adequacy as age-specific sets among the settled and pastoralist communities.
Conclusions
Context- and age-specific CFR could ensure adequate levels of more modelled nutrients among settled and pastoralist IYC than among agro-pastoralist communities where use of nutrient-dense foods was limited. Adequacy of all eleven modelled micronutrients was not achievable and additional approaches to ensure adequate diets are required. Consolidated messages should be easier to implement as part of a behaviour change strategy; however, they would likely not achieve the same improvements in population-level dietary adequacy as age-specific CFR.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.