We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inverse kinematics of robot is the basis of robot assembly, which directly determines the pose of robot. Because the traditional inverse solution algorithm is limited by the robot topology structure, singular pose and inverse solution accuracy, it affects the use of robots. In order to solve the above problems, an improved particle swarm optimization (PSO) algorithm is proposed to solve the inverse problem of robot. This algorithm initializes the particle population based on joint angle limitations, accelerating the convergence speed of the algorithm. In order to avoid falling into local optima and premature convergence, we have proposed a nonlinear weight strategy to update the speed and position of particles, enhancing the algorithm’s search ability, in addition introducing a penalty function to eliminate particles exceeding joint limits. Finally, the positions of common points and singular points are selected on PUMA 560 robot and redundant robot for inverse kinematics simulation verification. The results show that, compared with other algorithms, the improved PSO algorithm has higher convergence accuracy and better convergence speed in solving the inverse solution, and the algorithm has certain universality, which provides a new solution for the inverse kinematics solution of the assembly robot.
This study is aimed to evaluate the effect and underling mechanism of dietary supplementation with pyrroloquinoline quinone (PQQ) disodium on improving inflammatory liver injury in piglets challenged with lipopolysaccharide (LPS). A total of seventy-two crossbred barrows were allotted into four groups as follows: the CTRL group (basal diet + saline injection); the PQQ group (3 mg/kg PQQ diet + saline injection); the CTRL + LPS group (basal diet + LPS injection) and the PQQ + LPS group (3 mg/kg PQQ diet + LPS injection). On days 7, 11 and 14, piglets were challenged with LPS or saline. Blood was sampled at 4 h after the last LPS injection (day 14), and then the piglets were slaughtered and liver tissue was harvested. The results showed that the hepatic morphology was improved in the PQQ + LPS group compared with the CTRL + LPS group. PQQ supplementation decreased the level of serum inflammatory factors, aspartate aminotransferase and alanine transaminase, and increased the HDL-cholesterol concentration in piglets challenged with LPS; piglets in the PQQ + LPS group had lower liver mRNA level of inflammatory factors and protein level of α-smooth muscle actin than in the CTRL + LPS group. Besides, mRNA expression of STAT3/TGF-β1 pathway and protein level of p-STAT3(Tyr 705) were decreased, and mRNA level of PPARα and protein expression of p-AMPK in liver were increased in the PQQ + LPS group compared with the CTRL + LPS group (P < 0·05). In conclusion, dietary supplementation with PQQ alleviated inflammatory liver injury might partly via inhibition of the STAT3/TGF-β1 pathway in piglets challenged with LPS.
We define $\Psi $-autoreducible sets given an autoreduction procedure $\Psi $. Then, we show that for any $\Psi $, a measurable class of $\Psi $-autoreducible sets has measure zero. Using this, we show that classes of cototal, uniformly introenumerable, introenumerable, and hyper-cototal enumeration degrees all have measure zero.
By analyzing the arithmetical complexity of the classes of cototal sets and cototal enumeration degrees, we show that weakly 2-random sets cannot be cototal and weakly 3-random sets cannot be of cototal enumeration degree. Then, we see that this result is optimal by showing that there exists a 1-random cototal set and a 2-random set of cototal enumeration degree. For uniformly introenumerable degrees and introenumerable degrees, we utilize $\Psi $-autoreducibility again to show the optimal result that no weakly 3-random sets can have introenumerable enumeration degree. We also show that no 1-random set can be introenumerable.
The COVID-19 pandemic led to an initial increase in the incidence of carbapenem-resistant Enterobacterales (CRE) from clinical cultures in South-East Asia hospitals, which was unsustained as the pandemic progressed. Conversely, there was a decrease in CRE incidence from surveillance cultures and overall combined incidence. Further studies are needed for future pandemic preparedness.
Rapid urbanization and development in Southeast Asia have impacted its high biodiversity and unique ecosystems, directly through the use of forest lands for infrastructure building, and indirectly through increasing ecological footprints. In Greater Bandung, Indonesia and Greater Kuala Lumpur, Malaysia, rapid urbanization over the last thirty years has resulted in an increase in built infrastructure of approximately two and three times respectively. A Nature-Based Solutions approach can potentially underpin urban design and planning strategies in Greater Bandung and Greater Kuala Lumpur, as well as other cities in Southeast Asia, to address biodiversity conservation and also global environmental challenges such as climate change adaption and mitigation, while supporting well-being. Mainstreaming Nature-Based Solutions in Southeast Asia will require knowledge gaps to be addressed, greater awareness, increasing the evidence base, metrics for measuring success, support from institutions and stakeholders, and new and innovative financing. The urgency of global socio-ecological challenges, in particular the biodiversity and climate crisis, means transformational change is needed in Southeast Asia, for urban, ecological, technical, economic, and social systems, while still supporting sustainable development.
More people are living in cities than ever before with around 55 per cent of the world’s population in cities as of 2018, and this is expected to grow to 68 per cent by 2050 (UN DESA 2018). Much of this rapid urbanization is concentrated in the Global South, such as in low- and middle-income countries, which have all experienced significant increases in population and rural to urban migration (Hajer et al. 2020; UN DESA 2018). By 2050, there is expected to be another 2.5 billion people living in urban areas with approximately 90 per cent of this increase taking place in Asia and Africa (UN DESA 2018). Of the urban infrastructure required in 2050, around 40 per cent has yet to be built (Hajer et al. 2020). In the coming decades, Southeast Asia is expected to experience one of the greatest increases in population and urbanization in the world.
Countries in Southeast Asia are rapidly urbanizing from their historically rural population base, with each country at different points in their urbanization development pathway, from Singapore with 100 per cent urbanization to Cambodia with 24.7 per cent urbanization in 2021 (UN DESA 2018). Around 66 per cent of the population of Southeast Asia is expected to reside in urban areas in 2050, compared to an estimated 51 per cent in 2021 and 16 per cent in 1950 (Figure 1a). Of the Southeast Asian nations, Malaysia is one of the most urbanized of the low- and middle-income countries (Lechner et al. 2020a), with an estimated 78 per cent of its population in cities (Figure 1a). Meanwhile, Indonesia, which is a lower-middle-income country (World Bank 2021), has the largest population in Southeast Asia at 271 million (BPS 2021), with an estimated 57 per cent of its population in cities (Figure 1a). Indonesia is also home to the megacity (i.e., city with over 10 million) of Jakarta with a population in Daerah Khusus Ibukota (Capital Special Region) of 11 million (BPS 2021) and upwards of 30 million in the Jakarta metropolitan area (Jabodetabekjur) (BPS 2021). The growth of megacities such as Bangkok and Manila, and major cities approaching megacity size, such as Greater Kuala Lumpur and Ho Chi Minh, is triggering a ripple effect, promoting growth in nearby cities and thereby concentrating urbanization in selected regions (Suzuki 2019).
The economic, political, strategic and cultural dynamism in Southeast Asia has gained added relevance in recent years with the spectacular rise of giant economies in East and South Asia. This has drawn greater attention to the region and to the enhanced role it now plays in international relations and global economics.
The sustained effort made by Southeast Asian nations since 1967 towards a peaceful and gradual integration of their economies has had indubitable success, and perhaps as a consequence of this, most of these countries are undergoing deep political and social changes domestically and are constructing innovative solutions to meet new international challenges. Big Power tensions continue to be played out in the neighbourhood despite the tradition of neutrality exercised by the Association of Southeast Asian Nations (ASEAN).
The Trends in Southeast Asia series acts as a platform for serious analyses by selected authors who are experts in their fields. It is aimed at encouraging policymakers and scholars to contemplate the diversity and dynamism of this exciting region.
• Rapid urbanization and development in Southeast Asia have impacted its high biodiversity and unique ecosystems, directly through the use of forest lands for infrastructure building, and indirectly through increasing ecological footprints.
• In Greater Bandung, Indonesia and Greater Kuala Lumpur, Malaysia, rapid urbanization over the last thirty years has resulted in an increase in built infrastructure of approximately two and three times respectively.
• A Nature-Based Solutions approach can potentially underpin urban design and planning strategies in Greater Bandung and Greater Kuala Lumpur, as well as other cities in Southeast Asia, to address biodiversity conservation and also global environmental challenges such as climate change adaption and mitigation, while supporting well-being.
• Mainstreaming Nature-Based Solutions in Southeast Asia will require knowledge gaps to be addressed, greater awareness, increasing the evidence base, metrics for measuring success, support from institutions and stakeholders, and new and innovative financing.
• The urgency of global socio-ecological challenges, in particular the biodiversity and climate crisis, means transformational change is needed in Southeast Asia, for urban, ecological, technical, economic, and social systems, while still supporting sustainable development.
Concentrating on a surface vessel with input saturation, model uncertainties and unknown disturbances, a path following the adaptive backstepping control method based on prescribed performance line-of-sight (PPLOS) guidance is proposed. First, a prescribed performance asymmetric modified barrier Lyapunov function (PPAMBLF) is used to design the PPLOS and the heading controller, which make the path following position and heading errors meet the prescribed performance requirements. Furthermore, the backstepping and dynamic surface technique (DSC) are used to design the path following controller and the adaptive assistant systems are constructed to compensate the influence of input saturation. In addition, neural networks are introduced to approximate model uncertainties, and the adaptive laws are designed to estimate the bounds of the neural network approximation errors and unknown disturbances. According to the Lyapunov stability theory, all signals are semi-globally uniformly ultimately bounded. Finally, a 76$\,{\cdot }\,$2 m supply surface vessel is used for simulation experiments. The experimental results show that although the control inputs are limited, the control system can still converge quickly, and both position and heading errors can be limited to the prescribed performance requirements.
We review research investigating the influences of affective states on trust. To delineate the behavioral and neural effects of emotions on trust decisions, we consider research from Economics, Psychology and Neuroeconomics. We focus on behavioral and neural research that examined the impact of moods and emotions experienced at the moment of choice, and critically examine evidence concerning both positive and negative incidental and integral emotions. Overall, a pattern emerges from previous findings that strongly suggests that both incidental and integral emotions can influence decisions to trust. Specifically, positive incidental emotions, such as happiness, can enhance trust while negative incidental emotions, such as anxiety, reduce trust. At the same time, neuroimaging findings suggest that this behavioral effect is paralleled by emotions having specific effects on decision-relevant neural circuitry. Emotions alter activity during trust decisions in the temporoparietal junction and medial prefrontal cortex, which have been implicated in theory of mind, as well as the anterior insula, which is commonly implicated in anticipatory negative affect. We conclude by pointing at important avenues of research regarding the role of emotions in learning to trust from past experiences, as well as the chronic distortions of affect and social behavior commonly observed in psychopathology.
To enhance the developmental competency of murine ovarian follicles cultured in vitro, C-type natriuretic peptide (CNP) was supplemented in the culture system. Although the mechanism is not fully elucidated, it was reported that the effect of CNP supplementation was mediated by increased cyclic guanosine monophosphate (cGMP). In the present study, cGMP levels in media for murine preantral follicle culture were compared both between a control group without CNP supplementation and an experimental group with CNP supplementation and between days in each group. In addition, follicle growth patterns and oocyte maturity were assessed and compared between the two groups. Results demonstrated that along with in vitro culture, cGMP levels increased (P < 0.05) both in the control group and the experimental group, whereas cGMP levels were not significantly different between the two groups on the same day of in vitro culture (P > 0.05). The oocyte’s maturity was superior in the experimental group compared with the control group (P < 0.05). As ovarian follicles grew three-dimensionally in the experimental group but were flattened in the control group, CNP might improve oocyte maturity through maintaining the three-dimensional architecture of the ovarian follicle because of increased transzonal projections (TZP) and functional gap junctions between oocyte and surrounding granulosa cells.
New zircon U–Pb ages and whole-rock chemical data from four adakitic and two non-adakitic igneous rocks as tectonic blocks in the southern West Junggar accretionary complexes, northwestern China and one gabbro enclave in adakitic block provide further constraints on the initial subduction and following rollback process of the Junggar Ocean as part of southern Palaeo-Asian Ocean. The oldest adakitic monzonite in Tangbale is intruded by the non-adakitic quartz monzonite at 549 Ma, and the youngest adakitic diorite in Tierekehuola formed at 520 Ma. The Ediacaran–Cambrian magmatism show a N-wards younger trend. The high-SiO2 adakitic rocks have high Sr (300–663 ppm) and low Y (6.68–12.2 ppm), with Sr/Y = 40–84 and Mg no. = 46–60, whereas the non-adakitic rocks have high Y (13.2–22.7 ppm) and Yb (2.32–2.92 ppm), with Mg no. = 36–40. The gabbro has high MgO (14.81–15.11 wt%), Co (45–48 ppm), Cr (1120–1360 ppm) and Ni (231–288 ppm), with Mg no. = 72–73. All the samples show similar large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and Nb, Ta, Ti and varying Zr and Hf depletion, suggesting that they were formed in a subduction-related setting. The adakitic rocks were produced by partial melting of subducted oceanic slab, but the melts were modified by mantle wedge and slab-derived fluids; the non-adakitic rocks were likely derived from partial melts of the middle-lower arc crust; and the gabbro originated from the mantle wedge modified by slab-derived fluids. The magmatism could have been generated during the Ediacaran initial subduction and Cambrian slab rollback of the Junggar Ocean.
The present study investigated the effects of c-type natriuretic peptide (CNP) on the development of murine preantral follicles during in vitro growth (IVG). Preantral follicles isolated from ovaries of Kunming mice were cultured in vitro. In the culture system, CNP was supplemented in the experimental groups and omitted in the control groups. In Experiment 1, CNP was only supplemented at the early stage and follicle development was evaluated. In Experiments 2 and 3, CNP was supplemented during the whole period of in vitro culture. In Experiment 2, follicle development and oocyte maturity were evaluated. In Experiment 3, follicle development and embryo cleavage after in vitro fertilization (IVF) were assessed. The results showed that in the control groups in all three experiments, granulosa cells migrated from within the follicle and the follicles could not reach the antral stage. In the experimental groups in all three experiments, no migration of granulosa cells was observed and follicle development was assessed as attaining the antral stage, which was significantly superior to that of the control group (P < 0.0001). Oocyte meiotic arrest was effectively maintained, hence giving good developmental competence. In conclusion, CNP supplementation in the culture system during IVG benefited the development of murine preantral follicles.
This paper describes the study protocol, which aims to evaluate the effectiveness of a multifaceted intervention package called ‘Enhanced Primary Healthcare’ (EnPHC) on the process of care and intermediate clinical outcomes among patients with Type 2 diabetes mellitus (T2DM) and hypertension. Other outcome measures include patients’ experience and healthcare providers’ job satisfaction.
Background:
In 2014, almost two-thirds of Malaysia’s adult population aged 18 years or older had T2DM, hypertension or hypercholesterolaemia. An analysis of health system performance from 2016 to 2018 revealed that the control and management of diabetes and hypertension in Malaysia was suboptimal with almost half of the patients not diagnosed and just one-quarter of patients with diabetes appropriately treated. EnPHC framework aims to improve diagnosis and effective management of T2DM, hypertension or hypercholesterolaemia and their risk factors by increasing prevention, optimising management and improving surveillance of diagnosed patients.
Methods:
This is a quasi-experimental controlled study which involves 20 intervention and 20 control clinics in two different states in Malaysia, namely Johor and Selangor. The clinics in the two states were matched and randomly allocated to ‘intervention’ and ‘control’ arms. The EnPHC framework targets different levels from community to primary healthcare clinics and integrated referral networks.
Data are collected via a retrospective chart review (RCR), patient exit survey, healthcare provider survey and an intervention checklist. The data collected are entered into tablet computers which have installed in them an offline survey application. Interrupted time series and difference-in-differences (DiD) analyses will be conducted to report outcomes.
This paper provides an up-to-date review of the problems related to the generation, detection and mitigation of strong electromagnetic pulses created in the interaction of high-power, high-energy laser pulses with different types of solid targets. It includes new experimental data obtained independently at several international laboratories. The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce. The major emphasis is put on the GHz frequency domain, which is the most damaging for electronics and may have important applications. The physics of electromagnetic emissions in other spectral domains, in particular THz and MHz, is also discussed. The theoretical models and numerical simulations are compared with the results of experimental measurements, with special attention to the methodology of measurements and complementary diagnostics. Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions, which may have promising applications.