We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO2 factors, a well-designed implementation of demand-side and nature-based solutions, resilience building of ecosystems and the recognition that climate change mitigation costs can be justified by benefits to the health of humans and nature alone. We consider new insights about what to expect if we fail to include a new dimension of fire extremes and the prospect of cascading climate tipping elements.
Technical summary
A synthesis is made of 10 topics within climate research, where there have been significant advances since January 2020. The insights are based on input from an international open call with broad disciplinary scope. Findings include: (1) the options to still keep global warming below 1.5 °C; (2) the impact of non-CO2 factors in global warming; (3) a new dimension of fire extremes forced by climate change; (4) the increasing pressure on interconnected climate tipping elements; (5) the dimensions of climate justice; (6) political challenges impeding the effectiveness of carbon pricing; (7) demand-side solutions as vehicles of climate mitigation; (8) the potentials and caveats of nature-based solutions; (9) how building resilience of marine ecosystems is possible; and (10) that the costs of climate change mitigation policies can be more than justified by the benefits to the health of humans and nature.
Social media summary
How do we limit global warming to 1.5 °C and why is it crucial? See highlights of latest climate science.
Nitrogen (N) inputs from human activities have led to ecological deteriorations in large parts of the coastal oceans along European coastlines, including harmful algae blooms and anoxia.
Riverine N-loads are the most pronounced nitrogen sources to coasts and estuaries. Other significant sources are nitrogen in atmospheric deposition and fixation.
Approaches
This chapter describes all major N-turnover processes which are important for the understanding of the complexity of marine nitrogen cycling, including information on biodiversity.
Linkages to other major elemental cycles like carbon, oxygen, phosphorus and silica are briefly described in this chapter.
A tentative budget of all major sources and sinks of nitrogen integrated for global coasts is presented, indicating uncertainties where present, especially the N-loss capacity of ocean shelf sediments.
Finally, specific nitrogen problems in the European Regional Seas, including the Baltic Sea, Black Sea, North Sea, and Mediterranean Sea are described.
Key findings/state of knowledge
Today, human activity delivers several times more nitrogen to the coasts compared to the natural background of nitrogen delivery. The source of this is the land drained by the rivers. Therefore, the major European estuaries (e.g. Rhine, Scheldt, Danube and the coastlines receiving the outflow), North Sea, Baltic Sea, and Black Sea as well as some parts of the Mediterranean coastlines are affected by excess nutrient inputs.
Biodiversity is reduced under high nutrient loadings and oxygen deficiency. This process has led to changes in the nutrient recycling in sediments, because mature communities of benthic animals are lacking in disturbed coastal sediments. The recovery of communities may not be possible if high productivity and anoxia persist for longer time periods.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.