We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Clostridioides difficile infection (CDI) may be misdiagnosed if testing is performed in the absence of signs or symptoms of disease. This study sought to support appropriate testing by estimating the impact of signs, symptoms, and healthcare exposures on pre-test likelihood of CDI.
Methods:
A panel of fifteen experts in infectious diseases participated in a modified UCLA/RAND Delphi study to estimate likelihood of CDI. Consensus, defined as agreement by >70% of panelists, was assessed via a REDCap survey. Items without consensus were discussed in a virtual meeting followed by a second survey.
Results:
All fifteen panelists completed both surveys (100% response rate). In the initial survey, consensus was present on 6 of 15 (40%) items related to risk of CDI. After panel discussion and clarification of questions, consensus (>70% agreement) was reached on all remaining items in the second survey. Antibiotics were identified as the primary risk factor for CDI and grouped into three categories: high-risk (likelihood ratio [LR] 7, 93% agreement among panelists in first survey), low-risk (LR 3, 87% agreement in first survey), and minimal-risk (LR 1, 71% agreement in first survey). Other major factors included new or unexplained severe diarrhea (e.g., ≥ 10 liquid bowel movements per day; LR 5, 100% agreement in second survey) and severe immunosuppression (LR 5, 87% agreement in second survey).
Conclusion:
Infectious disease experts concurred on the importance of signs, symptoms, and healthcare exposures for diagnosing CDI. The resulting risk estimates can be used by clinicians to optimize CDI testing and treatment.
In adults with Clostridioides difficile infection (CDI), higher stool concentrations of toxins A and B are associated with severe baseline disease, CDI-attributable severe outcomes, and recurrence. We evaluated whether toxin concentration predicts these presentations in children with CDI.
Methods:
We conducted a prospective cohort study of inpatients aged 2–17 years with CDI who received treatment. Patients were followed for 40 days after diagnosis for severe outcomes (intensive care unit admission, colectomy, or death, categorized as CDI primarily attributable, CDI contributed, or CDI not contributing) and recurrence. Baseline stool toxin A and B concentrations were measured using ultrasensitive single-molecule array assay, and 12 plasma cytokines were measured when blood was available.
Results:
We enrolled 187 pediatric patients (median age, 9.6 years). Patients with severe baseline disease by IDSA-SHEA criteria (n = 34) had nonsignificantly higher median stool toxin A+B concentration than those without severe disease (n = 122; 3,217.2 vs 473.3 pg/mL; P = .08). Median toxin A+B concentration was nonsignificantly higher in children with a primarily attributed severe outcome (n = 4) versus no severe outcome (n = 148; 19,472.6 vs 429.1 pg/mL; P = .301). Recurrence occurred in 17 (9.4%) of 180 patients. Baseline toxin A+B concentration was significantly higher in patients with versus without recurrence: 4,398.8 versus 280.8 pg/mL (P = .024). Plasma granulocyte colony-stimulating factor concentration was significantly higher in CDI patients versus non-CDI diarrhea controls: 165.5 versus 28.5 pg/mL (P < .001).
Conclusions:
Higher baseline stool toxin concentrations are present in children with CDI recurrence. Toxin quantification should be included in CDI treatment trials to evaluate its use in severity assessment and outcome prediction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.