Malaria remains a major health challenge in developing countries, with climate change intensifying its impact. Pakistan is among the most vulnerable nations. This study examines the relationship between temperature and malaria cases in two highly affected districts, Bannu and Lakki Marwat, to inform climate-adaptive interventions.
We analyzed monthly malaria cases (2014–2022) from the Integrated Vector Control/Malaria Control Program in Khyber Pakhtunkhwa, combined with gridded meteorological data from Copernicus ERA5-Land. Time-series analysis using distributed lag nonlinear models and quasi-Poisson regression was applied to assess the associations.
The findings suggest that as temperatures exceed 22.4°C, malaria transmission increases by 9 to 10% for every 1°C rise in both districts. In Bannu, up to 39.8% of reported malaria cases could be attributed to heat, while in Lakki Marwat, 54.1% of cases were attributable to heat. Under high emission scenarios, heat-related malaria cases could increase by 0.8 to 3.5% by the 2060s. Relationship between temperature and malaria transmission is complex and is influenced by environmental factors such as precipitation and humidity.
Given Pakistan’s limited healthcare infrastructure, addressing climate-driven malaria risks is urgent. Recent severe floods and malaria surges highlight the need for climate adaptation measures and strengthened healthcare systems to enhance community resilience.