We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This contribution reports on the biosynthesis of nickel oxide and zinc oxide nanoparticles (NiO-NPs & ZnO-NPs) via a natural extract from Moringa Oleifera leaves as an effective chelating and/or oxidizing/reduction agent of nickel nitrate hexahydrate and zinc nitrate hexahydrate. The structural and optical properties of these two types of semiconductors obtained in a similar procedure are investigated using X-rays Diffraction (XRD), Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR), diffuse reflectance UV-Visible-NIR and Photoluminescence (PL) techniques. The structural analysis shows the formation of pure cubic NiO-NPs and pure wurtzite ZnO-NPs with an average crystallite size of 17.80 nm and 10.81 nm respectively. Their band gaps, calculated from the diffuse reflectance analysis were found to be 4.28 eV and 3.35 eV respectively.
This contribution provides the synthesis and characterization of nickel oxide nanoparticles (NiO NPs) which were prepared by green synthesis method using natural extract oranges peel skin (Peel Citrus Sinensis) as an effective bio-oxidizing/bio-reducing agent. The effect of different calcination temperatures on the size of the NiO NPs was investigated. The prepared nanoparticles were characterized by various techniques such as X-rays diffraction (XRD) results indicated that all the samples have a face-centered cubic (FCC) structure and confirmed the presence of high degree of crystallinity nature NiO NPs. The functional group composition of NiO NPs were investigated by using attenuated total reflection-Fourier transform infrared (ART-FTIR), Photoluminescence (PL), and Scanning electron microscopy (SEM).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.