We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
The Vela pulsar (J0835$-$4510) is known to exhibit variations in Faraday rotation and dispersion on multi-decade timescales due to the changing sightline through the surrounding Vela supernova remnant and the Gum Nebula. Until now, variations in Faraday rotation towards Vela have not been studied on timescales less than around a decade. We present the results of a high-cadence observing campaign carried out with the Aperture Array Verification System 2 (AAVS2), a prototype SKA-Low station, which received a significant bandwidth upgrade in 2022. We collected observations of the Vela pulsar and PSR J0630$-$2834 (a nearby pulsar located outside the Gum Nebula), spanning $\sim$1 and $\sim$0.3 yr, respectively, and searched for linear trends in the rotation measure (RM) as a function of time. We do not detect any significant trends on this timescale ($\sim$months) for either pulsar, but the constraints could be greatly improved with more accurate ionospheric models. For the Vela pulsar, the combination of our data and historical data from the published literature have enabled us to model long-term correlated trends in RM and dispersion measure (DM) over the past two decades. We detect a change in DM of $\sim$0.3 $\mathrm{cm}^{-3}\,\mathrm{pc}$ which corresponds to a change in electron density of $\sim$$10^5\,\mathrm{cm}^{-3}$ on a transverse length scale of $\sim$1–2 au. The apparent magnetic field strength in the time-varying region changes from $240^{+30}_{-20}\,\mu\mathrm{G}$ to $-6.2^{+0.7}_{-0.9}\,\mu\mathrm{G}$ over the time span of the dataset. As well as providing an important validation of polarimetry, this work highlights the pulsar monitoring capabilities of SKA-Low stations, and the niche science opportunities they offer for high-precision polarimetry and probing the microstructure of the magneto-ionic interstellar medium.
Early nutritional and growth experiences can impact development, metabolic function, and reproductive outcomes in adulthood, influencing health trajectories in the next generation. The insulin-like growth factor (IGF) axis regulates growth, metabolism, and energetic investment, but whether it plays a role in the pathway linking maternal experience with offspring prenatal development is unclear. To test this, we investigated patterns of maternal developmental weight gain (a proxy of early nutrition), young adult energy stores, age, and parity as predictors of biomarkers of the pregnancy IGF axis (n = 36) using data from the Cebu Longitudinal Health and Nutrition Survey in Metro Cebu, Philippines. We analyzed maternal conditional weight measures at 2, 8, and 22 years of age and leptin at age 22 (a marker of body fat/energy stores) in relation to free IGF-1 and IGFBP-3 in mid/late pregnancy (mean age = 27). Maternal IGF axis measures were also assessed as predictors of offspring fetal growth. Maternal age, parity, and age 22 leptin were associated with pregnancy free IGF-1, offspring birth weight, and offspring skinfold thickness. We find that free IGF-1 levels in pregnancy are more closely related to nutritional status in early adulthood than to preadult developmental nutrition and demonstrate significant effects of young adult leptin on offspring fetal fat mass deposition. We suggest that the previously documented finding that maternal developmental nutrition predicts offspring birth size likely operates through pathways other than the maternal IGF axis, which reflects more recent energy status.
Majority of international guidelines for bipolar disorders are based on evidences from clinical trials. In contrast, the Korean Medication Algorithm Project for Bipolar Disorder (KMAP-BP) was developed to adopt an expert-consensus paradigm which was more practical and specific to the atmosphere in Korea.
Objectives
In this study, preferred medication strategies for acute mania over six consecutively published KMAP-BP (2002, 2006, 2010, 2014, 2018, and 2022) were investigated.
Methods
A written survey using a nine-point scale was asked to Korean experts about the appropriateness of various treatment strategies and treatment agents. A written survey asked about the appropriateness of various treatment strategies and treatment agents commonly used by clinicians as the first-line.
Results
The most preferred option for the initial treatment of mania was a combination of a mood stabilizer (MS) and an atypical antipsychotic (AAP) in every edition. Preference for combined treatment for euphoric mania increased, peaked in KMAP-BP 2010, and declined slightly. Either MS or AAP monotherapy was also considered a first-line strategy for mania, but not for all types of episodes, including mixed/psychotic mania. Among MSs, lithium and valproate are almost equally preferred except in the mixed subtype where valproate is the most recommended MS. The preference of valproate showed reverse U-shaped curve. This preference change of valproate may indicate the concern about teratotoxicity in women. Quetiapine, aripiprazole, and olanzapine were the preferred AAP for acute mania since 2014. This change might depend on the recent evidences and safety profile. In cases of unsatisfactory response to initial medications, switching or adding another first-line agent was recommended. The most notable changes over time included the increasing preference for AAPs.
Conclusions
The Korean experts have been increasingly convinced of the effectiveness of a combination therapy for acute mania. There have been evident preference changes: increased for AAP and decreased for carbamazepine.
Poor cardiovascular health occurs with age and is associated with increased dementia risk, yet its impact on frontotemporal lobar degeneration (FTLD) and autosomal dominant neurodegenerative disease has not been well established. Examining cardiovascular risk in a population with high genetic vulnerability provides an opportunity to assess the impact of lifestyle factors on brain health outcomes. In the current study, we examined whether systemic vascular burden associates with accelerated cognitive and brain aging outcomes in genetic FTLD.
Participants and Methods:
166 adults with autosomal dominant FTLD (C9orf72 n= 97; GRN n= 34; MAPT n= 35; 54% female; Mage = 47.9; Meducation = 15.6 years) enrolled in the Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) and Longitudinal Evaluation of Familial Frontotemporal Dementia Longitudinal FTD study (ALLFTD) were included. Participants completed neuroimaging and were screened for cardiovascular risk and functional impairment during a comprehensive neurobehavioral and medical interview. A vascular burden score (VBS) was created by summing vascular risk factors (VRS) [diabetes, hypertension, hyperlipidemia, and sleep apnea] and vascular diseases (VDS) [cerebrovascular disease (e.g., TIA, CVA), cardiac arrhythmia (e.g., atrial fibrillation, pacemaker, defibrillator), coronary artery disease (e.g., myocardial infarction, cardiac bypass, stent), and congestive heart failure] following a previously developed composite (range 0 to 8). We examined the interaction between each vascular health metric (VBS, VDS, VRS) and age (vascular health*age) on clinical severity (CDR plus NACC FTLD-SB), and white matter hyperintensity (WMH) volume outcomes, adjusting for age and sex. Vascular risk, disease, and overall burden scores were examined in separate models.
Results:
There was a statistically significant interaction between total VBS and age on both clinical severity (ß=0.20, p=0.044) and WMH burden (ß=0.20, p=0.032). Mutation carriers with higher vascular burden evidenced worse clinical and WMH outcomes for their age. When breaking down the vascular burden score into (separate) vascular risk (VRS) and vascular disease (VDS) scores, the interaction between age and VRS remained significant only for WMH (ß=0.26, p=0.009), but not clinical severity (ß=0.04, p=0.685). On the other hand, the interaction between VDS and age remained significant only for clinical severity (ß=0.20, p=0.041) but not WMH (ß=0.17, p=0.066).
Conclusions:
Our results demonstrate that systemic vascular burden is associated with an “accelerated aging” pattern on clinical and white matter outcomes in autosomal dominant FTLD. Specifically, mutation carriers with greater vascular burden show poorer neurobehavioral outcomes for their chronological age. When separating vascular risk from disease, risk was associated with higher age-related WMH burden, whereas disease was associated with poorer age-related clinical severity of mutation carriers. This pattern suggests preferential brain-related effects of vascular risk factors, while the functional impact of such factors may be more closely aligned with fulminant vascular disease. Our results suggest cardiovascular health may be an important, potentially modifiable risk factor to help mitigate the cognitive and behavioral disturbances associated with having a pathogenic variant of autosomal dominant FTLD. Future studies should continue to examine the neuropathological processes underlying the impact of cardiovascular risk in FTLD to inform more precise recommendations, particularly as it relates to lifestyle interventions.
Tissue inhibitor of metalloproteinases 2 (TIMP2) is produced peripherally, crosses the blood-brain barrier, and improves synaptic plasticity and hippocampal-dependent cognition in aged mice; however, the role of TIMP2 in human cognitive aging is unclear. We examined associations of circulating TIMP2 levels in blood with a known plasticity-inducing behavior, physical activity, and cognitive functioning among older adults along the Alzheimer’s disease continuum.
Participants and Methods:
Participants included 84 community-dwelling older adults (meanage = 78.8; 57% female; 82% cognitively normal; 14% MCI; 4% mild dementia; 35% PET Aß+) enrolled in the UC San Francisco Memory and Aging Center. All participants completed 30 days of observational FitbitTM monitoring to quantify physical activity (average daily steps), as well as a comprehensive in-person visit including blood draw (proteins assayed on SOMAscan platform), [18F]AV-45 positron emission tomography (PET) to quantify brain beta-amyloid (centiloids), and neuropsychological assessment. Composite cognitive z-scores were calculated for memory (California Verbal Learning Test-II [CVLT-II] and Benson Figure Recall), semantic processing (animal fluency and Boston Naming Test), and executive functioning (digits backwards span, Stroop inhibition, modified trail making test, lexical fluency, and design fluency). Multiple linear regression examined TIMP2 as a function of physical activity, covarying for age and PET centiloids. Additional regression models separately examined cognitive z-scores as a function of TIMP2, covarying for age, sex, education, PET centiloids, and body mass index (BMI).
Results:
TIMP2 was not significantly correlated with age, sex, education, or PET centiloids (ps > 0.05); however, TIMP2 was negatively correlated with BMI (r = -0.23, p = 0.036). Greater average daily steps related to higher levels of TIMP2 (b = 0.30, 95%CI = 0.04-0.55, p = 0.022). TIMP2 also related to better semantic processing (b = 0.28, 95%CI = 0.04-0.51, p = 0.021) and executive functioning (b = 0.26, 95%CI = 0.03-0.49, p = 0.028). TIMP2 did not significantly relate to memory (p > 0.05).
Conclusions:
Greater physical activity was associated with higher concentrations of blood factor TIMP2, which in turn related to better cognitive functioning independent of Alzheimer’s disease pathology burden. These results support previous mouse models by broadly replicating relationships between TIMP2 and cognition in humans, while also uniquely demonstrating an association between TIMP2 and physical activity, a modifiable protective factor in both typical and diseased cognitive aging. Our domain-specific results, however, suggest that benefits of TIMP2 in humans may involve a broader neuroanatomical network than the hippocampal-specific effects previously shown in mice. Although exact mechanisms of TIMP2 need further examination, TIMP2 is known to be enriched in human umbilical cord plasma, has been shown to be involved in cell-growth promoting activities, and may relate to increased neural plasticity in older age. Further examination of TIMP2 and other novel blood-based proteins as potential therapeutic targets for improved cognitive aging, including in the presence of Alzheimer’s disease, is warranted.
Quantitative Susceptibility Mapping (QSM) is an MRI-based technique that sensitively measures in-vivo iron deposition via relaxation and magnetic susceptibility of brain tissue. Iron is essential for brain homeostasis, including oxidative metabolism, formation and maintenance of neural networks, and myelin synthesis. While increased levels of iron deposition occur during normal aging, high levels may have detrimental effects. Previous work has linked excessive brain iron accumulation to oxidative stress, beta-amyloid and tau toxicity, neurodegeneration, and cognitive dysfunction, particularly memory loss. Physical activity, on the other hand, correlates with higher synaptic integrity and memory performance, even in the presence of neuropathology. To date, it is unknown how physical activity may affect iron deposition-related cognition changes. We examined the moderating role of physical activity on the relationship between QSM hippocampal iron deposition and verbal memory in typically aging adults.
Participants and Methods:
62 cognitively unimpaired older adults from the UCSF Memory and Aging Center (age mean(SD) = 78.34(7.28) years; 56% women; education mean(SD) = 17.94(1.72) years; 85% non-Hispanic White) completed neuropsychological testing and brain MRI during annual research visits, followed by Fitbit™ physical activity monitoring for 30 days. Average total daily steps were aggregated. Participants completed 3T Prisma neuroimaging with QSM, and regional iron deposition levels were quantified. All subjects also underwent diffusion tensor imaging (fractional anisotropy). Verbal memory was assessed via long delay free recall scores from the California Verbal Learning Test II (CVLT-II). Linear regression examined verbal memory as a function of hippocampal QSM (bilateral), physical activity, and their interaction. Models covaried for age, sex, and education. Additional models separately examined left and right hippocampal QSM, as well as subcortical QSM to determine lateralization and specificity of verbal memory effects to hippocampal iron deposition, respectively.
Results:
Univariably, higher bilateral hippocampal QSM correlated with worse verbal memory (r= 0.35; p= 0.015). Adjusting for demographics, physical activity moderated the relationship between bilateral hippocampal QSM and verbal memory (ß= 0.41, p= 0.011), such that at higher levels of physical activity, the negative relationship between hippocampal QSM and verbal memory was significantly attenuated. Results persisted when adjusting for DTI integrity of the uncinate fasciculus and fornix white matter tracts. Lateralization models were both significant, suggesting that results were not dominantly driven by either left (ß= 0.34, p= 0.048), or right (ß=0.31, p= 0.035) hippocampal QSM. In contrast, subcortical QSM did not correlate with memory performance (r= 0.13, p > 0.05) or interact with physical activity on verbal memory outcomes (p > 0.05).
Conclusions:
Physical activity significantly moderated the negative relationship between hippocampal QSM and verbal memory performance. Higher exercise engagement may buffer the adverse effect of hippocampal iron deposition on memory, potentially through its role in maintenance of myelin and synaptic integrity and/or protecting against other neurotoxic events (e.g., oxidative stress, neuronal cell death). Our results support that physical activity continues to be a modifiable risk factor that may offer a protective role in neurobiological pathways of memory and cognitive decline.
Despite emerging evidence suggesting the efficacy of psilocybin in the treatment of mood disorders such as depression, the exact mechanisms by which psilocybin is able to elicit these antidepressant effects remains unknown.
Objectives
As the use of psilocybin as a treatment modality for depression has garnered increasing interest, this study aims to summarize the existing evidence of the mechanism of action with which psilocybin alleviates depressive symptoms, focusing specifically on the neurobiological effects of psilocybin in human subjects.
Methods
Four databases (Ovid MEDLINE, EMBASE, psychINFO, and Web of Science) were searched using a combination of MeSH terms and free text keywords in September 2021. The original search included both human and animal studies and must have included testing of the mechanism of action of psilocybin. Only antidepressant effects were considered, with no other mood disorders or psychiatric diagnoses included. Two independent researchers screened at every stage of the review, with a third researcher resolving any conflicts. Though a full systematic review outlining the current literature on the complete mechanisms of action of psilocybin on depression was conducted, this abstract will focus specifically on the nine papers that included human subjects, disregarding the five animal models. PROSPERO registration number: 282710.
Results
After removing duplicates, the search identified 2193 papers and forty-nine were selected for full text review. Out of nine papers outlining the mechanisms of action of psilocybin use in human subjects, three papers investigated psilocybin’s effect on serotonin or glutamate receptor activity, two found an increase in synaptogenesis in regions such as the medial frontal cortex and hippocampus. Four found variation in blood flow to the amygdala, two found altered blood flow to the prefrontal cortex, and one found a reduction in delta power during sleep. Four papers found changes in functional connectivity or neurotransmission, most commonly in the hippocampus or prefrontal cortex.
Conclusions
Overall, the exact mechanism of psilocybin’s potential antidepressant effect remains unclear. Multiple pathways may be involved, including alterations in serotonin and glutamate receptor activity, as well as shifts in amygdala activity, neurogenesis, and functional connectivity in various brain regions. The relative lack of studies, and the variety of neurobiological modalities and endpoints used challenged the consolidation of data into consensus findings. Further studies are needed to better characterize psilocybin’s mechanism of action and to better understand the clinical effects of the use of psilocybin in the treatment of depression.
We investigate the diversity in the sizes and average surface densities of the neutral atomic hydrogen (H i) gas discs in $\sim$280 nearby galaxies detected by the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). We combine the uniformly observed, interferometric H i data from pilot observations of the Hydra cluster and NGC 4636 group fields with photometry measured from ultraviolet, optical, and near-infrared imaging surveys to investigate the interplay between stellar structure, star formation, and H i structural parameters. We quantify the H i structure by the size of the H i relative to the optical disc and the average H i surface density measured using effective and isodensity radii. For galaxies resolved by $>$$1.3$ beams, we find that galaxies with higher stellar masses and stellar surface densities tend to have less extended H i discs and lower H i surface densities: the isodensity H i structural parameters show a weak negative dependence on stellar mass and stellar mass surface density. These trends strengthen when we limit our sample to galaxies resolved by $>$2 beams. We find that galaxies with higher H i surface densities and more extended H i discs tend to be more star forming: the isodensity H i structural parameters have stronger correlations with star formation. Normalising the H i disc size by the optical effective radius (instead of the isophotal radius) produces positive correlations with stellar masses and stellar surface densities and removes the correlations with star formation. This is due to the effective and isodensity H i radii increasing with mass at similar rates while, in the optical, the effective radius increases slower than the isophotal radius. Our results are in qualitative agreement with previous studies and demonstrate that with WALLABY we can begin to bridge the gap between small galaxy samples with high spatial resolution H i data and large, statistical studies using spatially unresolved, single-dish data.
Childhood adversities (CAs) predict heightened risks of posttraumatic stress disorder (PTSD) and major depressive episode (MDE) among people exposed to adult traumatic events. Identifying which CAs put individuals at greatest risk for these adverse posttraumatic neuropsychiatric sequelae (APNS) is important for targeting prevention interventions.
Methods
Data came from n = 999 patients ages 18–75 presenting to 29 U.S. emergency departments after a motor vehicle collision (MVC) and followed for 3 months, the amount of time traditionally used to define chronic PTSD, in the Advancing Understanding of Recovery After Trauma (AURORA) study. Six CA types were self-reported at baseline: physical abuse, sexual abuse, emotional abuse, physical neglect, emotional neglect and bullying. Both dichotomous measures of ever experiencing each CA type and numeric measures of exposure frequency were included in the analysis. Risk ratios (RRs) of these CA measures as well as complex interactions among these measures were examined as predictors of APNS 3 months post-MVC. APNS was defined as meeting self-reported criteria for either PTSD based on the PTSD Checklist for DSM-5 and/or MDE based on the PROMIS Depression Short-Form 8b. We controlled for pre-MVC lifetime histories of PTSD and MDE. We also examined mediating effects through peritraumatic symptoms assessed in the emergency department and PTSD and MDE assessed in 2-week and 8-week follow-up surveys. Analyses were carried out with robust Poisson regression models.
Results
Most participants (90.9%) reported at least rarely having experienced some CA. Ever experiencing each CA other than emotional neglect was univariably associated with 3-month APNS (RRs = 1.31–1.60). Each CA frequency was also univariably associated with 3-month APNS (RRs = 1.65–2.45). In multivariable models, joint associations of CAs with 3-month APNS were additive, with frequency of emotional abuse (RR = 2.03; 95% CI = 1.43–2.87) and bullying (RR = 1.44; 95% CI = 0.99–2.10) being the strongest predictors. Control variable analyses found that these associations were largely explained by pre-MVC histories of PTSD and MDE.
Conclusions
Although individuals who experience frequent emotional abuse and bullying in childhood have a heightened risk of experiencing APNS after an adult MVC, these associations are largely mediated by prior histories of PTSD and MDE.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and
$S/N$
in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three
$60\,\mathrm{deg}^{2}$
regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of
$z \lesssim 0.08$
. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of
$z \approx 0.014$
is relatively low compared to the full WALLABY survey. The median galaxy H i mass is
$2.3 \times 10^{9}\,{\rm M}_{{\odot}}$
. The target noise level of
$1.6\,\mathrm{mJy}$
per 30′′ beam and
$18.5\,\mathrm{kHz}$
channel translates into a
$5 \sigma$
H i mass sensitivity for point sources of about
$5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$
across 50 spectral channels (
${\approx} 200\,\mathrm{km \, s}^{-1}$
) and a
$5 \sigma$
H i column density sensitivity of about
$8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$
across 5 channels (
${\approx} 20\,\mathrm{km \, s}^{-1}$
) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
Binge eating disorder (BED) is a pernicious psychiatric disorder which is linked with broad medical and psychiatric morbidity, and obesity. While BED may be characterized by altered cortical morphometry, no evidence to date examined possible sex-differences in regional gray matter characteristics among those with BED. This is especially important to consider in children, where BED symptoms often emerge coincident with rapid gray matter maturation.
Methods
Pre-adolescent, 9–10-year old boys (N = 38) and girls (N = 33) with BED were extracted from the 3.0 baseline (Year 0) release of the Adolescent Brain Cognitive Development Study. We investigated sex differences in gray matter density (GMD) via voxel-based morphometry. Control sex differences were also assessed in age and body mass index and developmentally matched control children (boys N = 36; girls N = 38). Among children with BED, we additionally assessed the association between dorsolateral prefrontal (dlPFC) GMD and parent-reported behavioral approach and inhibition tendencies.
Results
Girls with BED uniquely demonstrate diffuse clusters of greater GMD (p < 0.05, Threshold Free Cluster Enhancement corrected) in the (i) left dlPFC (p = 0.003), (ii) bilateral dmPFC (p = 0.004), (iii) bilateral primary motor and somatosensory cortex (p = 0.0003) and (iv) bilateral precuneus (p = 0.007). Brain-behavioral associations suggest a unique negative correlation between GMD in the left dlPFC and behavioral approach tendencies among girls with BED.
Conclusions
Early-onset BED may be characterized by regional sex differences in terms of its underlying gray matter morphometry.
Behavioral features of binge eating disorder (BED) suggest abnormalities in reward and inhibitory control. Studies of adult populations suggest functional abnormalities in reward and inhibitory control networks. Despite behavioral markers often developing in children, the neurobiology of pediatric BED remains unstudied.
Methods
58 pre-adolescent children (aged 9–10-years) with BED (mBMI = 25.05; s.d. = 5.40) and 66 age, BMI and developmentally matched control children (mBMI = 25.78; s.d. = 0.33) were extracted from the 3.0 baseline (Year 0) release of the Adolescent Brain Cognitive Development (ABCD) Study. We investigated group differences in resting-state functional MRI functional connectivity (FC) within and between reward and inhibitory control networks. A seed-based approach was employed to assess nodes in the reward [orbitofrontal cortex (OFC), nucleus accumbens, amygdala] and inhibitory control [dorsolateral prefrontal cortex, anterior cingulate cortex (ACC)] networks via hypothesis-driven seed-to-seed analyses, and secondary seed-to-voxel analyses.
Results
Findings revealed reduced FC between the dlPFC and amygdala, and between the ACC and OFC in pre-adolescent children with BED, relative to controls. These findings indicating aberrant connectivity between nodes of inhibitory control and reward networks were corroborated by the whole-brain FC analyses.
Conclusions
Early-onset BED may be characterized by diffuse abnormalities in the functional synergy between reward and cognitive control networks, without perturbations within reward and inhibitory control networks, respectively. The decreased capacity to regulate a reward-driven pursuit of hedonic foods, which is characteristic of BED, may in part, rest on this dysconnectivity between reward and inhibitory control networks.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to
$\sim\!5$
yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of
$\sim\!162$
h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of
$0.24\ \mathrm{mJy\ beam}^{-1}$
and angular resolution of
$12-20$
arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
Brief measurements of the subjective experience of stress with good predictive capability are important in a range of community mental health and research settings. The potential for large-scale implementation of such a measure for screening may facilitate early risk detection and intervention opportunities. Few such measures however have been developed and validated in epidemiological and longitudinal community samples. We designed a new single-item measure of the subjective level of stress (SLS-1) and tested its validity and ability to predict long-term mental health outcomes of up to 12 months through two separate studies.
Methods
We first examined the content and face validity of the SLS-1 with a panel consisting of mental health experts and laypersons. Two studies were conducted to examine its validity and predictive utility. In study 1, we tested the convergent and divergent validity as well as incremental validity of the SLS-1 in a large epidemiological sample of young people in Hong Kong (n = 1445). In study 2, in a consecutively recruited longitudinal community sample of young people (n = 258), we first performed the same procedures as in study 1 to ensure replicability of the findings. We then examined in this longitudinal sample the utility of the SLS-1 in predicting long-term depressive, anxiety and stress outcomes assessed at 3 months and 6 months (n = 182) and at 12 months (n = 84).
Results
The SLS-1 demonstrated good content and face validity. Findings from the two studies showed that SLS-1 was moderately to strongly correlated with a range of mental health outcomes, including depressive, anxiety, stress and distress symptoms. We also demonstrated its ability to explain the variance explained in symptoms beyond other known personal and psychological factors. Using the longitudinal sample in study 2, we further showed the significant predictive capability of the SLS-1 for long-term symptom outcomes for up to 12 months even when accounting for demographic characteristics.
Conclusions
The findings altogether support the validity and predictive utility of the SLS-1 as a brief measure of stress with strong indications of both concurrent and long-term mental health outcomes. Given the value of brief measures of mental health risks at a population level, the SLS-1 may have potential for use as an early screening tool to inform early preventative intervention work.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The coronavirus disease 2019 (COVID-19) pandemic represents an unprecedented threat to mental health. Herein, we assessed the impact of COVID-19 on subthreshold depressive symptoms and identified potential mitigating factors.
Methods
Participants were from Depression Cohort in China (ChiCTR registry number 1900022145). Adults (n = 1722) with subthreshold depressive symptoms were enrolled between March and October 2019 in a 6-month, community-based interventional study that aimed to prevent clinical depression using psychoeducation. A total of 1506 participants completed the study in Shenzhen, China: 726 participants, who completed the study between March 2019 and January 2020 (i.e. before COVID-19), comprised the ‘wave 1’ group; 780 participants, who were enrolled before COVID-19 and completed the 6-month endpoint assessment during COVID-19, comprised ‘wave 2’. Symptoms of depression, anxiety and insomnia were assessed at baseline and endpoint (i.e. 6-month follow-up) using the Patient Health Questionnaire-9 (PHQ-9), Generalised Anxiety Disorder-7 (GAD-7) and Insomnia Severity Index (ISI), respectively. Measures of resilience and regular exercise were assessed at baseline. We compared the mental health outcomes between wave 1 and wave 2 groups. We additionally investigated how mental health outcomes changed across disparate stages of the COVID-19 pandemic in China, i.e. peak (7–13 February), post-peak (14–27 February), remission plateau (28 February−present).
Results
COVID-19 increased the risk for three mental outcomes: (1) depression (odds ratio [OR] = 1.30, 95% confidence interval [CI]: 1.04–1.62); (2) anxiety (OR = 1.47, 95% CI: 1.16–1.88) and (3) insomnia (OR = 1.37, 95% CI: 1.07–1.77). The highest proportion of probable depression and anxiety was observed post-peak, with 52.9% and 41.4%, respectively. Greater baseline resilience scores had a protective effect on the three main outcomes (depression: OR = 0.26, 95% CI: 0.19–0.37; anxiety: OR = 1.22, 95% CI: 0.14–0.33 and insomnia: OR = 0.18, 95% CI: 0.11–0.28). Furthermore, regular physical activity mitigated the risk for depression (OR = 0.79, 95% CI: 0.79–0.99).
Conclusions
The COVID-19 pandemic exerted a highly significant and negative impact on symptoms of depression, anxiety and insomnia. Mental health outcomes fluctuated as a function of the duration of the pandemic and were alleviated to some extent with the observed decline in community-based transmission. Augmenting resiliency and regular exercise provide an opportunity to mitigate the risk for mental health symptoms during this severe public health crisis.
Benzodiazepine (BZD) prescription rates have increased over the past decade in the United States. Available literature indicates that sociodemographic factors may influence diagnostic patterns and/or prescription behaviour. Herein, the aim of this study is to determine whether the gender of the prescriber and/or patient influences BZD prescription.
Methods
Cross-sectional study using data from the Florida Medicaid Managed Medical Assistance Program from January 1, 2018 to December 31, 2018. Eligible recipients ages 18 to 64, inclusive, enrolled in the Florida Medicaid plan for at least 1 day, and were dually eligible. Recipients either had a serious mental illness (SMI), or non-SMI and anxiety.
Results
Total 125 463 cases were identified (i.e., received BZD or non-BZD prescription). Main effect of patient and prescriber gender was significant F(1, 125 459) = 0.105, P = 0 .745, partial η2 < 0.001. Relative risk (RR) of male prescribers prescribing a BZD compared to female prescribers was 1.540, 95% confidence intervals (CI) [1.513, 1.567], whereas the RR of male patients being prescribed a BZD compared to female patients was 1.16, 95% CI [1.14, 1.18]. Main effects of patient and prescriber gender were statistically significant F(1, 125 459) = 188.232, P < 0.001, partial η2 = 0.001 and F(1, 125 459) = 349.704, P < 0.001, partial η2 = 0.013, respectively.
Conclusions
Male prescribers are more likely to prescribe BZDs, and male patients are more likely to receive BZDs. Further studies are required to characterize factors that influence this gender-by-gender interaction.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.