We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fast radio bursts (FRBs) are millisecond-duration radio waves from the Universe. Even though more than 50 physical models have been proposed, the origin and physical mechanism of FRB emissions are still unknown. The classification of FRBs is one of the primary approaches to understanding their mechanisms, but previous studies classified conventionally using only a few observational parameters, such as fluence and duration, which might be incomplete. To overcome this problem, we use an unsupervised machine-learning model, the Uniform Manifold Approximation and Projection to handle seven parameters simultaneously, including amplitude, linear temporal drift, time duration, central frequency, bandwidth, scaled energy, and fluence. We test the method for homogeneous 977 sub-bursts of FRB 20121102A detected by the Arecibo telescope. Our machine-learning analysis identified five distinct clusters, suggesting the possible existence of multiple different physical mechanisms responsible for the observed FRBs from the FRB 20121102A source. The geometry of the emission region and the propagation effect of FRB signals could also make such distinct clusters. This research will be a benchmark for future FRB classifications when dedicated radio telescopes such as the square kilometer array or Bustling Universe Radio Survey Telescope in Taiwan discover more FRBs than before.
Straightplasma channels are widely used to guide relativistic intense laser pulses over several Rayleigh lengths for laser wakefield acceleration. Recently, a curved plasma channel with gradually varied curvature was suggested to guide a fresh intense laser pulse and merge it into a straight channel for staged wakefield acceleration [Phys. Rev. Lett. 120, 154801 (2018)]. In this work, we report the generation of such a curved plasma channel from a discharged capillary. Both longitudinal and transverse density distributions of the plasma inside the channel were diagnosed by analyzing the discharging spectroscopy. Effects of the gas-filling mode, back pressure and discharging voltage on the plasma density distribution inside the specially designed capillary are studied. Experiments show that a longitudinally uniform and transversely parabolic plasma channel with a maximum channel depth of 47.5 μm and length of 3 cm can be produced, which is temporally stable enough for laser guiding. Using such a plasma channel, a laser pulse with duration of 30 fs has been successfully guided along the channel with the propagation direction bent by 10.4°.
Listeriosis is a rare but serious foodborne disease caused by Listeria monocytogenes. This matched case–control study (1:1 ratio) aimed to identify the risk factors associated with food consumption and food-handling habits for the occurrence of sporadic listeriosis in Beijing, China. Cases were defined as patients from whom Listeria was isolated, in addition to the presence of symptoms, including fever, bacteraemia, sepsis and other clinical manifestations corresponding to listeriosis, which were reported via the Beijing Foodborne Disease Surveillance System. Basic patient information and possible risk factors associated with food consumption and food-handling habits were collected through face-to-face interviews. One hundred and six cases were enrolled from 1 January 2018 to 31 December 2020, including 52 perinatal cases and 54 non-perinatal cases. In the non-perinatal group, the consumption of Chinese cold dishes increased the risk of infection by 3.43-fold (95% confidence interval 1.27–9.25, χ2 = 5.92, P = 0.02). In the perinatal group, the risk of infection reduced by 95.2% when raw and cooked foods were well-separated (χ2 = 5.11, P = 0.02). These findings provide important scientific evidence for preventing infection by L. monocytogenes and improving the dissemination of advice regarding food safety for vulnerable populations.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
In this article, we discuss the backgrounds and technical details about several smart manufacturing projects in a tier-one electronics manufacturing facility. We devise a process to manage logistic forecast and inventory preparation for electronic parts using historical data and a recurrent neural network to achieve significant improvement over current methods. We present a system for automatically qualifying laptop software for mass production through computer vision and automation technology. The result is a reliable system that can save hundreds of man-years in the qualification process. Finally, we create a deep learning-based algorithm for visual inspection of product appearances, which requires significantly less defect training data compared to traditional approaches. For production needs, we design an automatic optical inspection machine suitable for our algorithm and process. We also discuss the issues for data collection and enabling smart manufacturing projects in a factory setting, where the projects operate on a delicate balance between process innovations and cost-saving measures.
Bragg coherent X-ray diffraction imaging has been used to determine the structure of the initial clusters of α-Fe nano crystals which form upon annealing of an iron-based amorphous alloy or metallic glass. The method is able to identify the shapes and strain of these crystallites without any need for cutting the sample, so can visualize them in three dimensions in their intact state. In this way, the delicate dendritic structures on the exterior of the crystallites can be seen and its density versus radius relationship identifies a fractal dimension of the porous region that is consistent with diffusion-limited aggregation models. The crystal sizes were found to be around 60 nm after annealing at 700 °C growing to about 330 nm after annealing at 750 °C. This article introduces the BCDI method and describes its application to characterize previously recrystallized samples of iron-based amorphous alloys. It paves the way for a possible future in situ nucleation/growth investigation of the relationship between kinetics and nanostructure of metallic glass.
Psychiatric disorders such as schizophrenia and major depressive disorder
(MDD) are likely to be caused by multiple susceptibility genes, each with
small effects in increasing the risk of illness. Identifying DNA variants
associated with schizophrenia and MDD is a crucial step in understanding
the pathophysiology of these disorders.
Aims
To investigate whether the SP4 gene plays a significant
role in schizophrenia or MDD in the Han Chinese population.
Method
We focused on nine single nucleotide polymorphisms (SNPs) harbouring the
SP4 gene and carried out case–control studies in 1235
patients with schizophrenia, 1045 patients with MDD and 1235 healthy
controls recruited from the Han Chinese population.
Results
We found that rs40245 was significantly associated with schizophrenia in
both allele and genotype distributions (Pallele = 0.0005, Pallele = 0.004 after Bonferroni correction; Pgenotype = 0.0023, Pgenotype = 0.0184 after Bonferroni correction). The rs6461563
SNP was significantly associated with schizophrenia in the allele
distributions (Pallele = 0.0033, Pallele = 0.0264 after Bonferroni correction).
Conclusions
Our results suggest that common risk factors in the SP4
gene are associated with schizophrenia, although not with MDD, in the Han
Chinese population.
Salivary α-amylase (sAA) is responsible for the ‘pre-digestion’ of starch in the oral cavity and accounts for up to 50 % of salivary protein in human saliva. An accumulating body of literature suggests that sAA is of nutritional importance; however, it is still not clear how sAA is related to individual's nutritional status. Although copy number variations (CNV) of the salivary amylase gene (AMY1) are associated with variation in sAA levels, a significant amount of sAA variation is not explained by AMY1 CNV. To measure sAA responses to gustatory stimulation with citric acid, we used sAA ratio (the ratio of stimulated sAA levels to those of resting sAA) and investigated acute sAA responses to citric acid in children with normal (Normal-BMI, n 22) and low (Low-BMI, n 21) BMI. The AMY1 gene copy number was determined by quantitative PCR. We, for the first time, demonstrated attenuated acute sAA responses (decreased sAA ratio) to gustatory stimulation in Low-BMI (thinness grade 3) children compared with the Normal-BMI children, which suggest that sAA responses to gustatory stimulation may be of nutritional importance. However, child's nutritional status was not directly related to their resting or stimulated sAA levels, and it was not associated with AMY1 gene copy number. Finally, AMY1 CNV might influence, but did not eventually determine, sAA levels in children.
The aim of this study was to evaluate the therapeutic effects of osteopontin neutralization treatment on schistosome-induced liver injury in BALB/C mice. We randomly divided 100 BALB/C mice into groups A, B, C, D and group E. Mice in all groups except group A were abdominally infected with schistosomal cercariae to induce a schistosomal hepatopathological model. Mice in group C, D and group E were respectively administered with praziquantel, praziquantel plus colchicine and praziquantel plus neutralizing osteopontin antibody. We extracted mouse liver tissues at 3 and 9 weeks after the ‘stool-eggs-positive’ day, observed liver histopathological changes by haematoxylin-eosin and Masson trichrome staining and detected the expression of osteopontin, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β1) by immunohistochemistry, RT-PCR and Western blot. We found that praziquantel plus neutralizing osteopontin antibody treatment significantly decreased the granuloma dimension, the percentage of collagen and the expression of osteopontin, α-SMA and TGF-β1 compared to praziquantel plus colchicine treatment in both the acute and chronic stage of schistosomal liver damage (P<0·05). So we believe that the combined regimen of osteopontin immunoneutralization and anti-helminthic treatment can reduce the granulomatous response and liver fibrosis during the schistosomal hepatopathologic course.
Sn/Ni–8.0 at.%V (Ni–7.0 wt%V) couples are prepared and the interfacial reactions at 210 and 250 °C are examined. In the early stage of reaction at 250 °C, a T phase is formed as a result of fast diffusion of Sn into the Ni–8.0 at.%V substrate. With a longer reaction, the outer region of the T phase transforms to a Ni-depletion layer, which has not been observed previously. Both the T phase and the Ni-depletion layer are analyzed using transmission electronic microscopy. This newly found Ni-depletion layer is composed of Sn and nanosize “VSn2(V2Sn3)” particulates. The solid/solid reaction paths in the Sn/Ni–8.0 at.%V couples evolve from Sn/T/Ni–V, Sn/Ni3Sn4/T/Ni–V to Sn/Ni3Sn4/VSn2(V2Sn3). During the liquid/solid reactions, the paths are liquid/T/Ni–V, liquid/liquid + Ni3Sn4/T/Ni–V, liquid/liquid + Ni3Sn4/liquid + VSn2(V2Sn3)/T/Ni–V, and liquid/liquid + Ni3Sn4/liquid + VSn2(V2Sn3).
The objective of this research is to obtain uniform vacuum-deposition triclinic phase II crystal of titanyl phthalocyanine (α-TiOPc) films from various TiOPc crystal forms. The crystal structure and morphology of vacuum-deposited TiOPc films can be manipulated by deposition rate and substrate temperature. Crystal structure was determined by X-ray diffraction (XRD). Thin film morphology was analyzed by scanning electron microscope (SEM). Highly ordered α-TiOPc film with an edge-on molecular orientation was deposited on octadecyltrichlorosilane (OTS) treated Si/SiO2 surface. All TiOPc crystal forms, such as amorphous, α and γ phases, provided the triclinic phase II crystal of TiOPc. The full width at half maximum (FWHM) of the peak at 7.5 degree in XRD spectra was 0.23, 0.27 and 0.29 for γ, α and amorphous powder when substrate temperature maintained at 180°C, respectively. The FWHM of the 7.5 degree peak can be achieved 0.22 deposited from all crystal forms at elevated temperature higher than 220°C. The α-TiOPc deposition film exhibited an excellent p-type semiconducting behavior in air with dense packing structure due to the close π–π molecular packing. The devices, field-effect mobility range from 0.02 to 0.26 cm2/V s depending on various process parameters. The on/off current ratio (Ion/Ioff) is over 105. The TiOPc OTFTs will be applied as multi-parameter gas sensor in the near future.
Co-based brazing alloy CoFeNi(Si, B)CrTi was designed for SiC joining. The periodic banded reaction structure that existed at the interface between SiC and the traditional Ni-based or Co-based braze has been eliminated by the new brazing alloy. The maximum room-temperature four-point bend strength of 161 MPa was achieved for SiC/SiC joint under the optimum brazing condition of brazing filler thickness of 120 μm, brazing temperature of 1150 °C, and brazing time of 10 min. The corresponding reaction layer of the SiC/SiC joint is composed of multilayer silicides and TiC band, and many small TiC particles are scattered throughout the matrix of the central part of the joint. The joints thus exhibit stable high-temperature strength. It is believed that the formation of TiC in the joint contributes not only to the elimination of the periodic banded reaction structure, but also to the high joint strength and the high-temperature stability.
A facile, surfactant-assisted, hydrothermal approach has been developed to synthesize lanthanide phosphate single-crystalline nanowires/nanorods with smooth surface, uniform diameter, and good crystallinity. The surfactant Pluronic P123 was found to play a crucial role on the uniform morphology of lanthanide phosphate single-crystalline nanowires/nanorods. Photoluminescence spectra of the lanthanide phosphate single-crystalline nanowires/nanorods show that these nanowires/nanorods have strong photoluminescent emissions in the ultraviolet-visible and near-infrared regions. The present work is a preliminary and significant step toward the potential luminescent and catalytic applications of lanthanide compound based one-dimensional nanostructures.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.