We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterized 57 isolates from a 2-phase clonal outbreak of New Delhi metallo-β-lactamase–producing Eschericha coli, involving 9 Israeli hospitals; all but 1 isolate belonged to sequence-type (ST) 410. Most isolates in the second phase harbored blaKPC-2 in addition to blaNDM-5. Genetic sequencing revealed most dual-carbapenemase–producing isolates to be monophyletically derived from a common ancestor.
To conduct a pilot study implementing combined genomic and epidemiologic surveillance for hospital-acquired multidrug-resistant organisms (MDROs) to predict transmission between patients and to estimate the local burden of MDRO transmission.
Design:
Pilot prospective multicenter surveillance study.
Setting:
The study was conducted in 8 university hospitals (2,800 beds total) in Melbourne, Australia (population 4.8 million), including 4 acute-care, 1 specialist cancer care, and 3 subacute-care hospitals.
Methods:
All clinical and screening isolates from hospital inpatients (April 24 to June 18, 2017) were collected for 6 MDROs: vanA VRE, MRSA, ESBL Escherichia coli (ESBL-Ec) and Klebsiella pneumoniae (ESBL-Kp), and carbapenem-resistant Pseudomonas aeruginosa (CRPa) and Acinetobacter baumannii (CRAb). Isolates were analyzed and reported as routine by hospital laboratories, underwent whole-genome sequencing at the central laboratory, and were analyzed using open-source bioinformatic tools. MDRO burden and transmission were assessed using combined genomic and epidemiologic data.
Results:
In total, 408 isolates were collected from 358 patients; 47.5% were screening isolates. ESBL-Ec was most common (52.5%), then MRSA (21.6%), vanA VRE (15.7%), and ESBL-Kp (7.6%). Most MDROs (88.3%) were isolated from patients with recent healthcare exposure.
Combining genomics and epidemiology identified that at least 27.1% of MDROs were likely acquired in a hospital; most of these transmission events would not have been detected without genomics. The highest proportion of transmission occurred with vanA VRE (88.4% of patients).
Conclusions:
Genomic and epidemiologic data from multiple institutions can feasibly be combined prospectively, providing substantial insights into the burden and distribution of MDROs, including in-hospital transmission. This analysis enables infection control teams to target interventions more effectively.
To describe an outbreak of bacteremia caused by vancomycin-sensitive Enterococcus faecalis (VSEfe).
Design:
An investigation by retrospective case control and molecular typing by whole-genome sequencing (WGS).
Setting:
A tertiary-care neonatal unit in Melbourne, Australia.
Methods:
Risk factors for 30 consecutive neonates with VSEfe bacteremia from June 2011 to December 2014 were analyzed using a case control study. Controls were neonates matched for gestational age, birth weight, and year of birth. Isolates were typed using WGS, and multilocus sequence typing (MLST) was determined.
Results:
Bacteremia for case patients occurred at a median time after delivery of 23.5 days (interquartile range, 14.9–35.8). Previous described risk factors for nosocomial bacteremia did not contribute to excess risk for VSEfe. WGS typing results designated 43% ST179 as well as 14 other sequence types, indicating a polyclonal outbreak. A multimodal intervention that included education, insertion checklists, guidelines on maintenance and access of central lines, adjustments to the late onset sepsis antibiotic treatment, and the introduction of diaper bags for disposal of soiled diapers after being handled inside the bed, led to termination of the outbreak.
Conclusions:
Typing using WGS identified this outbreak as predominately nonclonal and therefore not due to cross transmission. A multimodal approach was then sought to reduce the incidence of VSEfe bacteremia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.