We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.
Methods:
We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations.
Results:
BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI.
Conclusions:
We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
Negative symptoms in schizophrenia have been associated with structural and functional alterations of the amygdala. We hypothesised that there would be between-group differences in amygdala volume and neural activation patterns during processing of affective stimuli among patients with schizophrenia and healthy controls. We further hypothesised correlations between neuroimaging metrics and clinical ratings of negative symptoms in patients with schizophrenia.
Methods
We used structural and functional magnetic resonance imaging to assess volume and neural activation of the amygdala in 28 patients with schizophrenia and 28 healthy controls.
Results
We found no between-group differences in amygdala volume or neural activation. However, we found a significant negative correlation between emotional blunting and neural activation in the left amygdala during processing of positive affect. We also found a significant negative correlation between stereotyped thinking and the volume of right amygdala.
Conclusion
Our findings implicate the amygdala in a subgroup of negative symptoms in schizophrenia that are characterised by reduced expression with blunted affect and stereotyped thinking.
Motor retardation is a characteristic feature of bipolar depression, and is also a core feature of Parkinson's disease. Within the framework of the functional deafferentiation theory in Parkinson's disease, we hypothesised that motor retardation in bipolar depression is mediated by disrupted subcortical activation, leading to decreased activation of cortical motor areas during finger tapping.
Methods
We used functional magnetic resonance imaging to investigate neural activity during self-paced finger tapping to elucidate whether brain regions that mediate preparation, control and execution of movement are activated differently in subjects with bipolar depression (n = 9) compared to healthy controls (n = 12).
Results
An uncorrected whole-brain analysis revealed significant group differences in dorsolateral and ventromedial prefrontal cortex. Corrected analyses showed non-significant differences in patients compared to controls: decreased and less widespread activation of the left putamen and left pallidum; increased activity in the left thalamus and supplementary motor area; decreased activation in the left lateral pre- and primary motor cortices; absence of activation in the pre-supplementary motor area; activation of the bilateral rostral cingulate motor area.
Conclusion
Both movement preparation and execution may be affected in motor retardation, and the activity in the whole left-side motor circuit is altered during self-initiated motor performance in bipolar depression.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.