We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Ruminant-derived foods, predominantly milk and meat, are globally recognized as staples of a high-quality diet. Despite their widespread popularity, there is a notable deficiency in comprehensive standards addressing the nutritional values and safety of these products. This gap significantly limits both the supply of and demand for premium quality milk and meat. This review endeavors to highlight the benefits of utilizing metabolomics for the evaluation of quality and safety in milk and meat products from ruminants. It identifies critical metabolites, genetic signals, and metabolic pathways related to the synthesis of ruminant-derived milk and meat, proposing their potential as nutritional or regulatory targets and biomarkers. These biomarkers are instrumental in predicting and assessing the quality and safety of dairy and meat products, offering guidance for quality-based pricing and food safety inspections in the market. This review offers a critical overview of current metabolomics-based platforms and tools for interpreting the quality and safety of ruminant foods. The core metabolic biomarkers and biological biosynthetic processes of milk and meat enhance our understanding of the interplay between conventional food production from animals and new synthetic biological technologies.
This study aimed to assess the relationship between COVID-19 infection-related conditions and depressive symptoms among medical staff after easing the zero-COVID policy in China, and to further examine the mediating role of professional burnout.
Methods
A total of 1716 medical staff from all levels of health care institutions in 16 administrative districts of Beijing, China, were recruited to participate at the end of 2022 in this cross-sectional study. Several multiple linear regressions and mediating effects tests were performed to analyze the data.
Results
At the beginning of the end of the zero-COVID policy in China, 91.84% of respondents reported infection with COVID-19. After adjusting for potential confounding variables, the severity of infection symptoms was significantly positively associated with high levels of depressive symptoms (β = 0.06, P < 0.001), and this association was partially mediated by professional burnout. Specifically, emotional exhaustion (95% CI, 0.131, 0.251) and depersonalization (95% CI, 0.009, 0.043) significantly mediated the association between the severity of infection symptoms and depressive symptoms.
Conclusions
The mental health of medical staff with more severe symptoms of COVID-19 infection should be closely monitored. Also, interventions aimed at reducing emotional exhaustion and depersonalization may effectively reduce their risk of developing depressive symptoms.
Turbulent circular pipe flows subjected to axial system rotation are studied using direct numerical simulations (DNS) for a wide range of rotation numbers of $Ro_b = 0\unicode{x2013}20$ at a fixed Reynolds number. To ensure that energetic turbulent eddy motions are captured at high rotation numbers, long pipes up to $L_z = 180{\rm \pi} R$ are used in DNS. Two types of energy-containing flow structures have been observed. The first type is hairpin structures that are characteristic of the turbulent boundary layer developing over the pipe wall for both non-rotating and axially rotating flows. The second type is Taylor columns forming at moderate and high rotation numbers. Based on the study of two-point autocorrelation coefficients, it is observed that Taylor columns exhibit quasi-periods in both axial and azimuthal directions. According to the premultiplied spectra, Taylor columns feature one single characteristic axial length scale at the moderate rotation numbers but two at high rotation numbers. It is discovered that the axial system rotation suppresses the sweep events systematically and impedes the formation of hairpin structures. As the rotation number is increased, the turbulence kinetic energy held by Taylor columns enhances rapidly associated with significant increases in their axial length scales.
Disordered eating (DE) is associated with elevated cardiometabolic risk (CMR) factors, yet little is known about this association in non-Western countries. We examined the association between DE characteristics and CMR and tested the potential mediating role of BMI. This cross-sectional study included 2005 Chinese women (aged 18–50 years) from the 2015 China Health and Nutrition Survey. Loss of control, restraint, shape concern and weight concern were assessed using selected questions from the SCOFF questionnaire and the Eating Disorder Examination-Questionnaire. Eight CMR were measured by trained staff. Generalised linear models examined associations between DE characteristics with CMR accounting for dependencies between individuals in the same household. We tested whether BMI potentially mediated significant associations using structural equation modelling. Shape concern was associated with systolic blood pressure (β (95 % CI) 0·06 (0·01, 0·10)), diastolic blood pressure (DBP) (0·07 (95 % CI 0·03, 0·11)) and high-density lipoprotein (HDL)-cholesterol (–0·08 (95 % CI –0·12, −0·04)). Weight concern was associated with DBP (0·06 (95 % CI 0·02, 0·10)), triglyceride (0·06 (95 % CI 0·02, 0·10)) and HDL-cholesterol (–0·10 (95 % CI –0·14, −0·07)). Higher scores on DE characteristics were associated with higher BMI, and higher BMI was further associated with lower HDL-cholesterol and higher other CMR. In summary, we observed significant associations between shape and weight concerns with some CMR in Chinese women, and these associations were potentially partially mediated by BMI. Our findings suggest that prevention and intervention strategies focusing on addressing DE could potentially help reduce the burden of CMR in China, possibly through controlling BMI.
This study aimed to evaluate the methodological quality of existing meta-analyses (MA) and the quality of evidence for outcome indicators to provide an updated overview of the evidence concerning the therapeutic efficacy of the Mediterranean diet (MD) for various types of CVD.
Design:
We conducted comprehensive searches of PubMed, Cochrane Library, and Embase databases. The quality of the MA was assessed using the A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR 2) checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence evaluation system was employed to evaluate the quality of evidence for significant outcomes.
Setting:
The CVD remains a significant contributor to global mortality. Multiple MA have consistently demonstrated the efficacy of medical interventions in managing CVD. However, due to variations in the scope, quality and outcomes of these reviews, definitive conclusions are yet to be established.
Participants:
This study included five randomized trials and twelve non-randomized studies, with a combined participant population of 716 318.
Results:
The AMSTAR 2 checklist revealed that 54·55 % of the studies demonstrated high quality, while 9·09 % exhibited low quality, and 36·36 % were deemed critically low quality. Additionally, there was moderate evidence supporting a positive correlation between MD and CHD/acute myocardial infarction, stroke, heart failure, cardiovascular events, coronary events and major adverse cardiovascular events.
Conclusions:
This study indicates that although recognizing the potential efficacy of MD in managing CVD, the quality of the methodology and the evidence for the outcome indicators remain unsatisfactory.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
As the southernmost part of the central segment of the Central Asian Orogenic Belt, the northern Alxa area is characterized by abundant Permian magmatism and records key information on the geological evolution of the Palaeo-Asian Ocean. This study reports new zircon U–Pb and Lu–Hf isotopic and whole-rock geochemical data of the early Permian (285–286 Ma) Huisentala gabbro and Huodonghaer diorites from the Zhusileng–Hangwula Belt in the northern Alxa area. The gabbro is characterized by high Al, Ca, Mg# and light rare-earth elements, and low K, P and high field strength elements (e.g., Ti, Nb and Ta). Furthermore, the gabbro shows heterogeneous zircon ϵHf(t) value (−2.5 to +2.6). The Huodonghaer diorites show high MgO (3.46–6.32 wt%), Mg# (49–58), Sr (408–617 ppm) and Ba (223–419 ppm), and low FeOT/MgO (1.27–1.83) and TiO2 (0.48–0.90 wt%), with geochemical features similar to the high-Mg andesite/diorite. They show radiogenic zircon ϵHf(t) values of +1.2 to +4.9 and high Th/Nb ratios. These features suggest that the Huisentala gabbro and the Huodonghaer diorites were derived from the partial melting of mantle peridotite that was metasomatized by subduction-related fluids and by subducted sediment-derived melts, respectively.
The age-related heterogeneity in major depressive disorder (MDD) has received significant attention. However, the neural mechanisms underlying such heterogeneity still need further investigation. This study aimed to explore the common and distinct functional brain abnormalities across different age groups of MDD patients from a large-sample, multicenter analysis.
Methods
The analyzed sample consisted of a total of 1238 individuals including 617 MDD patients (108 adolescents, 12–17 years old; 411 early-middle adults, 18–54 years old; and 98 late adults, > = 55 years old) and 621 demographically matched healthy controls (60 adolescents, 449 early-middle adults, and 112 late adults). MDD-related abnormalities in brain functional connectivity (FC) patterns were investigated in each age group separately and using the whole pooled sample, respectively.
Results
We found shared FC reductions among the sensorimotor, visual, and auditory networks across all three age groups of MDD patients. Furthermore, adolescent patients uniquely exhibited increased sensorimotor-subcortical FC; early-middle adult patients uniquely exhibited decreased visual-subcortical FC; and late adult patients uniquely exhibited wide FC reductions within the subcortical, default-mode, cingulo-opercular, and attention networks. Analysis of covariance models using the whole pooled sample further revealed: (1) significant main effects of age group on FCs within most brain networks, suggesting that they are decreased with aging; and (2) a significant age group × MDD diagnosis interaction on FC within the default-mode network, which may be reflective of an accelerated aging-related decline in default-mode FCs.
Conclusions
To summarize, these findings may deepen our understanding of the age-related biological and clinical heterogeneity in MDD.
The advent of time-domain sky surveys has generated a vast amount of light variation data, enabling astronomers to investigate variable stars with large-scale samples. However, this also poses new opportunities and challenges for the time-domain research. In this paper, we focus on the classification of variable stars from the Catalina Surveys Data Release 2 and propose an imbalanced learning classifier based on Self-paced Ensemble (SPE) method. Compared with the work of Hosenie et al. (2020), our approach significantly enhances the classification Recall of Blazhko RR Lyrae stars from 12% to 85%, mixed-mode RR Lyrae variables from 29% to 64%, detached binaries from 68% to 97%, and LPV from 87% to 99%. SPE demonstrates a rather good performance on most of the variable classes except RRab, RRc, and contact and semi-detached binary. Moreover, the results suggest that SPE tends to target the minority classes of objects, while Random Forest is more effective in finding the majority classes. To balance the overall classification accuracy, we construct a Voting Classifier that combines the strengths of SPE and Random Forest. The results show that the Voting Classifier can achieve a balanced performance across all classes with minimal loss of accuracy. In summary, the SPE algorithm and Voting Classifier are superior to traditional machine learning methods and can be well applied to classify the periodic variable stars. This paper contributes to the current research on imbalanced learning in astronomy and can also be extended to the time-domain data of other larger sky survey projects (LSST, etc.).
A 198.8 m deep borehole was drilled through ice to subglacial bedrock in the northwestern marginal part of Princess Elizabeth Land, ~12 km south of Zhongshan Station, in January–February 2019. Three years later, in February 2022, the borehole temperature profile was measured, and the geothermal heat flow (GHF) was estimated using a 1-D time-dependent energy-balance equation. For a depth corresponding to the base of the ice sheet, the GHF was calculated as 72.6 ± 2.3 mW m−2 and temperature −4.53 ± 0.27°C. The regional averages estimated for this area based, generally, on tectonic setting vary from 55 to 66 mW m−2. A higher GHF is interpreted to originate mostly from the occurrence of metamorphic complexes intruded by heat-producing elements in the subglacial bedrock below the drill site.
Emphasis placed on Xiao (孝; filial piety) in Chinese culture highlights parents' investment in their children with the expectation of being cared for when older. An increasing number of Chinese students come to the United Kingdom (UK) to study, with the majority returning home and likely to become future care-givers for their parents. Little attention has been paid to the implications of transnational mobility of Chinese students on the reciprocal aspects of future care responsibility. With the uniquely changing family structure due to consequences of the One-Child Policy, we conducted proactive research on the opportunities and challenges that Chinese transnational students anticipate they may face in future care-giving for elderly parents. Hence, this study's aim was to make a novel contribution to knowledge through exploration of the perspectives of Chinese students in England on intergenerational ties and filial obligations. Adopting a social constructivist philosophical position, we conducted three focus groups with 19 UK-based Chinese students, using a semi-structured topic guide with informed consent. Interviews were translated, transcribed and analysed using reflective thematic analysis, capturing semantic and latent meanings, and employed a descriptive and interpretative approach. Six themes were discovered, revealing a ‘culture of duty’ where familial obligation and societal expectations were prominent. Prospective care-givers anticipated a future dilemma between balancing work commitments and providing care as mandated by Xiao. Furthermore, it appeared that lack of preparedness might further exacerbate barriers faced when accessing support. We surmised that the changing demographics and absence of formal support could compound stressors over time, especially if cognitive dissonance arises as realities of life do not fit with societal expectations. Our findings imply that policy makers, practitioners and the government will need to adequately support prospective family care-givers who are returnees in caring for older generations.
Dietary transitions in China have undergone rapid changes in over the last three decades. The purpose of this study is to describe trends in the macronutrient consumption, the sources of those nutrients and the diet quality among Chinese adults.
Design:
Longitudinal China Health and Nutrition Survey (CHNS) cohort analysis. Main outcomes are dietary energy intake from total carbohydrate, protein and fat and their subtypes, as well as food sources of carbohydrates, protein, and fat, and the China Dietary Guidelines Index 2018 (CDGI-2018).
Setting:
CHNS (1991, 2000, 2009 and 2015).
Participants:
Data from the longitudinal 1991, 2000, 2009 and 2015 CHNS of adults aged 18 years or older who had complete demographic information.
Results:
The estimated mean energy intake from total carbohydrate decreased from 62·6 % to 50·6 % between 1991 and 2015, while the mean energy intake from total protein increased from 12·6 % to just 13·1 % and the mean energy intake from total fat significantly increased from 24·0 % to 35·8 % (P < 0·001 for trend). Decreases were observed in evaluated mean energy from low-quality carbohydrates (from 53·6 % to 41·7 %) and incomplete protein (from 9·3 % to 7·5 %), while increases were seen in estimated mean energy from high-quality protein (from 3·3 % to 5·5 %), high-quality fat (from 9·1 % to 16·7 %) and low-quality fat (from 14·9 % to 19·0 %). Low-quality carbohydrates, primarily those derived from refined grains, decreased from 52·2 % to 36·2 %. The diet quality as measured by CDGI-2018 improved, with the estimated mean increasing from 41·7 to 52·4 (P < 0·01 for trend).
Conclusion:
For Chinese adults, there was a significant change in the macronutrient composition over the previous few decades. The percentage of energy consumed from carbohydrates significantly decreased; however, the percentage of energy consumed from total fat significantly increased. Additionally, the diet quality remains suboptimal.
Based on the chemical reaction model proposed by Park, the ‘blackout’ of a reentry vehicle is studied in this paper. The temperature, pressure and electron density distribution characteristics around the reentry vehicle were simulated at various flight speeds and altitudes by USim. Subsequently, the scattering matrix method was used to study the transmission characteristics of terahertz waves in ‘blackout’. The simulation results show that the temperature around the aircraft is mainly affected by speed, the pressure is mainly affected by the altitude and electron density is affected by both of these factors. The calculation results show that the transmission characteristics of terahertz waves in plasma are mainly affected by electron density, while the effects of temperature and pressure cannot be ignored either.
Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a severe and life-threatening complication, characterised by multi-organ failure and high short-term mortality. However, there is limited information on the impact of various comorbidities on HBV-ACLF in a large population. This study aimed to investigate the relationship between comorbidities, complications and mortality. In this retrospective observational study, we identified 2166 cases of HBV-ACLF hospitalised from January 2010 to March 2018. Demographic data from the patients, medical history, treatment, laboratory indices, comorbidities and complications were collected. The mortality rate in our study group was 47.37%. Type 2 diabetes mellitus was the most common comorbidity, followed by alcoholic liver disease. Spontaneous bacterial peritonitis, pneumonia and hepatic encephalopathy (HE) were common in these patients. Diabetes mellitus and hyperthyroidism are risk factors for death within 90 days, together with gastrointestinal bleeding and HE at admission, HE and hepatorenal syndrome during hospitalisation. Knowledge of risk factors can help identify HBV-ACLF patients with a poor prognosis for HBV-ACLF with comorbidities and complications.
For the path planning of autonomous underwater vehicles (AUVs) in the ocean environment, in addition to the planned path length and safe obstacle avoidance, it is also necessary to pay attention to the impact of ocean currents on the planned path. Therefore, this paper improves the original D* algorithm, and adds the obstacle cost item and the steering angle cost item as constraints on the basis of the original cost function, thus ensuring the navigation safety of the AUV. Considering that ocean currents have a greater impact on the energy consumption of AUVs, this paper establishes a cost model for the impact of ocean currents on AUV energy consumption and applies it to the D* path planning algorithm, so that AUVs can use ocean currents to reduce energy consumption, which can be seen through simulation experiments. The simulation results show that the improvement of the algorithm can plan an optimal energy consumption path.
Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia.
Aims
To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers.
Method
We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites.
Results
We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19–85.74%; sensitivity, 75.31–89.29% and area under the receiver operating characteristic curve, 0.797–0.909.
Conclusions
These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
The southeastern Central Asian Orogenic Belt (CAOB) records the assembly process between several micro-continental blocks and the North China Craton (NCC), with the consumption of the Paleo-Asian Ocean (PAO), but whether the S-wards subduction of the PAO beneath the northern NCC was ongoing during Carboniferous–Permian time is still being debated. A key issue to resolve this controversy is whether the Carboniferous magmatism in the northern NCC was continental arc magmatism. The Alxa Block is the western segment of the northern NCC and contiguous to the southeastern CAOB, and their Carboniferous–Permian magmatism could have occurred in similar tectonic settings. In this contribution, new zircon U–Pb ages, elemental geochemistry and Sr–Nd isotopic analyses are presented for three early Carboniferous granitic plutons in the southwestern Alxa Block. Two newly identified aluminous A-type granites, an alkali-feldspar granite (331.6 ± 1.6 Ma) and a monzogranite (331.8 ± 1.7 Ma), exhibit juvenile and radiogenic Sr–Nd isotopic features, respectively. Although a granodiorite (326.2 ± 6.6 Ma) is characterized by high Sr/Y ratios (97.4–139.9), which is generally treated as an adikitic feature, this sample has highly radiogenic Sr–Nd isotopes and displays significantly higher K2O/Na2O ratios than typical adakites. These three granites were probably derived from the partial melting of Precambrian continental crustal sources heated by upwelling asthenosphere in lithospheric extensional setting. Regionally, both the Alxa Block and the southeastern CAOB are characterized by the formation of early Carboniferous extension-related magmatic rocks but lack coeval sedimentary deposits, suggesting a uniform lithospheric extensional setting rather than a simple continental arc.
Different from developed countries, there is a paucity of research examining how the Dietary Approaches to Stop Hypertension (DASH) and Mediterranean diets relate to lipids in less-developed ethnic minority regions (LEMR). A total of 83 081 participants from seven ethnic groups were retrieved from the baseline data of the China Multi-Ethnic Cohort study, which was conducted in less-developed Southwest China between May 2018 and September 2019. Multivariable linear regression models were then used to examine the associations of the DASH and alternative Mediterranean diet (AMED) scores, assessed by modified DASH score and AMED, as well as their components with total cholesterol (TC), LDL-cholesterol, HDL-cholesterol, TAG and TC/HDL-cholesterol. The DASH scores were negatively associated with TC, HDL-cholesterol and TAG. Comparing the highest quintiles with the lowest DASH scores, TC decreased 0·0708 (95 % CI −0·0923, −0·0493) mmol/l, HDL-cholesterol decreased 0·0380 (95 % CI −0·0462, −0·0299) mmol/l and TAG decreased 0·0668 (95 % CI −0·0994, −0·0341) mmol/l. The AMED scores were negatively associated with TC, LDL-cholesterol and HDL-cholesterol. Comparing the highest quintiles with the lowest AMED scores, TC decreased 0·0816 (95 % CI −0·1035, −0·0597) mmol/l, LDL-cholesterol decreased 0·0297 (95 % CI −0·0477, −0·0118) mmol/l and HDL-cholesterol decreased 0·0275 (95 % CI −0·0358, −0·0192) mmol/l. Although both the DASH diet and the Mediterranean diet were negatively associated with blood lipids, those associations showed different patterns in LEMR, particularly for TAG and HDL-cholesterol.
Thermal convection of fluid is a more efficient way than diffusion to carry heat from hot sources to cold places. Here, we experimentally study the Rayleigh–Bénard convection of aqueous glycerol solution in a cubic cell with suspensions of rod-like particles made of polydimethylsiloxane. The particles are inertial due to their large thermal expansion coefficient and finite sizes. The thermal expansion coefficient of the particles is three times larger than that of the background fluid. This contrast makes the suspended particles lighter than the local fluid in hot regions and heavier in cold regions. The heat transport is enhanced at relatively large Rayleigh number ($\textit {Ra}$) but reduced at small $\textit {Ra}$. We demonstrate that the increase of Nusselt number arises from the particle–boundary layer interactions: the particles act as ‘active’ mixers of the flow and temperature fields across the boundary layers.