We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An actively controllable cascaded proton acceleration driven by a separate 0.8 picosecond (ps) laser is demonstrated in proof-of-principle experiments. MeV protons, initially driven by a femtosecond laser, are further accelerated and focused into a dot structure by an electromagnetic pulse (EMP) on the solenoid, which can be tuned into a ring structure by increasing the ps laser energy. An electrodynamics model is carried out to explain the experimental results and show that the dot-structured proton beam is formed when the outer part of the incident proton beam is optimally focused by the EMP force on the solenoid; otherwise, it is overfocused into a ring structure by a larger EMP. Such a separately controlled mechanism allows precise tuning of the proton beam structures for various applications, such as edge-enhanced proton radiography, proton therapy and pre-injection in traditional accelerators.
Double aortic arch is an exceedingly rare congenital vascular anomaly, and its association with anomalous origins of the vertebral arteries is even more uncommon. Enhanced computed tomography revealed a double aortic arch with the left common carotid artery, left vertebral artery, and left subclavian artery originating from the left arch, and the right common carotid artery, right vertebral artery, and right subclavian artery arising from the right arch. To our knowledge, this is the first report of a double aortic arch with six distinct vessels originating from both arches. Enhanced CT should be considered in double aortic arch patients to identify such anomalous origins of branch arteries.
This study employs direct numerical simulations to examine the effects of varying backpressure conditions on the turbulent atomisation of impinging liquid jets. Using the incompressible Navier–Stokes equations, and a volume-of-fluid approach enhanced by adaptive mesh refinement and an isoface-based interface reconstruction algorithm, we analyse spray characteristics in the environments with ambient gas densities ranging from 1 to 40 times the atmospheric pressure under five different backpressure scenarios. We investigate the behaviour of turbulent jets, incorporate realistic orifice geometries and identify significant variations in the atomisation patterns depending on backpressure. Two distinct atomisation types emerge, namely jet-sheet-ligament-droplet at lower backpressures and jet-sheet-fragment-droplet at higher ones, alongside a transition from dilute to dense spray patterns. This variation affects the droplet size distribution and spray dynamics, with increased backpressure reducing the spray's spreading angle and breakup length, while increasing the droplet size variation. Furthermore, these conditions promote distributions that induce rapid, nonlinear wavy motion in liquid sheets. Topological analysis of the atomisation field using velocity-gradient tensor invariants reveals significant variations in topology volume fractions across different regions. Downstream, the droplet Sauter mean diameter increases and then stabilises, reflecting the continuous breakup and coalescence processes, notably under higher backpressures. This research underscores the substantial impact of backpressure on impinging-jet atomisation and provides essential insights for nozzle design to optimise droplet distributions.
Recent studies of viscous dissipation mechanisms in impacting droplets have revealed distinct behaviours between the macroscale and nanoscale. However, the transition of these mechanisms from the macroscale to the nanoscale remains unexplored due to limited research at the microscale. This work addresses the gap using the many-body dissipative particle dynamics (MDPD) method. While the MDPD method omits specific atomic details, it retains crucial mesoscopic effects, making it suitable for investigating the impact dynamics at the microscale. Through the analysis of velocity contours within impacting droplets, the research identifies three primary contributors to viscous dissipation during spreading: boundary-layer viscous dissipation from shear flow; rim geometric head loss; and bulk viscous dissipation caused by droplet deformation. This prompts a re-evaluation of viscous dissipation mechanisms at both the macroscale and nanoscale. It reveals that the same three kinds of dissipation are present across all scales, differing only in their relative intensities at each scale. A model of the maximum spreading factor (βmax) incorporating all forms of viscous dissipation without adjustable parameters is developed to substantiate this insight. This model is validated against three distinct datasets representing the macroscale, microscale and nanoscale, encompassing a broad spectrum of Weber numbers, Ohnesorge numbers and contact angles. The satisfactory agreement between the model predictions and the data signifies a breakthrough in establishing a universal βmax model applicable across all scales. This model demonstrates the consistent nature of viscous dissipation mechanisms across different scales and underscores the importance of integrating microscale behaviours to understand macroscale and nanoscale phenomena.
Binary nanodroplet collisions have received increasing attention, whilst the identification of collision outcomes and the viscous dissipation mechanism have remained poorly understood. Using molecular dynamics simulations, this study investigates binary nanodroplet collisions over wide ranges of Weber number (We), Ohnesorge number (Oh) and off-centre distances. Coalescence, stretching separation and shattering are identified; however, bouncing, reflexive separation and rotational separation reported for millimetre-sized collisions are not observed, which is attributed to the enhanced viscous effect caused by the ‘natural’ high-viscosity characteristics of nanodroplets. Intriguingly, as an intermediate outcome, holes form in retracting films at relatively high We, arising from the vibration and thermal fluctuation of the films. Due to the combined effects of inertial, capillary and viscous forces, binary nanodroplet collisions fall into the cross-over regime, so estimating viscous dissipation becomes extremely important for distinguishing outcome boundaries. Based on the criterion that stretching separation is triggered only when the residual off-centre kinetic energy exceeds the surface energy required for separation, the boundary equation between coalescence and stretching separation is established. Here, viscous dissipation is calculated by the extracted flow feature from simulations, showing that the ratio of viscous dissipation to the initial kinetic energy depends only on Oh, not on We. Because of complex viscous dissipation mechanisms, the same boundary equation in the cross-over regime has also not been satisfactorily revealed for macroscale collisions. Therefore, the proposed equation is tested for wide data sources from both macroscale and nanoscale collisions, and satisfying agreement is achieved, demonstrating the universality of the equation.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
Straightplasma channels are widely used to guide relativistic intense laser pulses over several Rayleigh lengths for laser wakefield acceleration. Recently, a curved plasma channel with gradually varied curvature was suggested to guide a fresh intense laser pulse and merge it into a straight channel for staged wakefield acceleration [Phys. Rev. Lett. 120, 154801 (2018)]. In this work, we report the generation of such a curved plasma channel from a discharged capillary. Both longitudinal and transverse density distributions of the plasma inside the channel were diagnosed by analyzing the discharging spectroscopy. Effects of the gas-filling mode, back pressure and discharging voltage on the plasma density distribution inside the specially designed capillary are studied. Experiments show that a longitudinally uniform and transversely parabolic plasma channel with a maximum channel depth of 47.5 μm and length of 3 cm can be produced, which is temporally stable enough for laser guiding. Using such a plasma channel, a laser pulse with duration of 30 fs has been successfully guided along the channel with the propagation direction bent by 10.4°.
In this study, basing on the level-set and point-particle methods, we have developed a numerical methodology for simulating the dynamics of colloidal droplets under flow conditions in which the particle–particle, particle–interface and particle–fluid interactions are all taken into account efficiently. By using this methodology, we have determined the essential role of particle-laden interfaces in the deformation of colloidal droplets in simple shear flow with relatively low particle concentrations. Generally, adsorbed particles strongly enhance the deformability of the whole droplet, which is principally attributed to the particle-induced reduction of the effective surface tension. Systematic simulations are performed to reveal the detailed roles of interparticle interactions and particle surface coverage in the deformation of particle-covered droplets. Most importantly, we find the promotion effect of adsorbed particles on the droplet deformation cannot be completely included via the effective capillary number characterizing the particle-induced overall reduction of the effective surface tension, which is particularly obvious at high particle coverage. We propose two potential reasons for this surprising phenomenon, i.e. the convection-induced non-uniform distribution of adsorbed particles over the droplet surface and the particle-induced reduction of the droplet surface mobility, which have not been discussed yet in previous numerical and experimental studies of particle-covered droplets in shear flow.
Immunoprophylaxis has not completely eliminated hepatitis B virus (HBV) infection due to hyporesponsiveness to hepatitis B vaccine (HepB). We explored the impact of folic acid supplementation (FAS) in pregnant women with positive hepatitis B surface antigen (HBsAg) on their infant hepatitis B surface antibody (anti-HBs) and the mediation effect of infant interleukin-4 (IL-4). We recruited HBsAg-positive mothers and their neonates at baseline. Maternal FAS was obtained via a questionnaire, and neonatal anti-HBs and IL-4 were detected. Follow-up was performed at 11–13 months of age of infants, when anti-HBs and IL-4 were measured. We applied univariate and multivariate analyses. A mediation effect model was performed to explore the mediating role of IL-4. A total of 399 mother–neonate pairs were enrolled and 195 mother–infant pairs were eligible for this analysis. The infant anti-HBs geometric mean concentrations in the maternal FAS group were significnatly higher than those in the no-FAS group (383·8 mIU/ml, 95 % CI: 294·2 mIU/ml to 500·7 mIU/ml v. 217·0 mIU/ml, 95 % CI: 147·0 mIU/ml to 320·4 mIU/ml, z = –3·2, P = 0·001). Infants born to women who took folic acid (FA) within the first trimester were more likely to have high anti-HBs titres (adjusted β-value = 194·1, P = 0·003). The fold change in IL-4 from neonates to infants partially mediated the beneficial influence of maternal FAS on infant anti-HBs (24·7 % mediation effect) after adjusting for confounding factors. FAS during the first trimester to HBsAg-positive mothers could facilitate higher anti-HBs levels in infants aged 11–13 months partly by upregulating IL-4 in infants.
Recently, the nature of viscoelastic drag-reducing turbulence (DRT), especially the maximum drag reduction (MDR) state, has become a focus of controversy. It has long been regarded as polymer-modulated inertial turbulence (IT), but is challenged by the newly proposed concept of elasto-inertial turbulence (EIT). This study is to repicture DRT in parallel plane channels by introducing dynamics of EIT through statistical, structural and budget analysis for a series of flow regimes from the onset of drag reduction to EIT. Some underlying mechanistic links between DRT and EIT are revealed. Energy conversion between velocity fluctuations and polymers as well as pressure redistribution effects are of particular concern, based on which a new energy self-sustaining process (SSP) of DRT is repictured. The numerical results indicate that at low Reynolds number ($Re$), weak IT flow is replaced by a laminar regime before the barrier of EIT dynamics is established with the increase of elasticity, whereas, at moderate $Re$, EIT-related SSP can get involved and survive from being relaminarized. This further explains the reason why relaminarization phenomenon is observed for low $Re$ while the flow directly enters MDR and EIT at moderate $Re$. Moreover, with the proposed energy picture, the newly discovered phenomenon that streamwise velocity fluctuations lag behind those in the wall-normal direction can be well explained. The repictured SSP certainly justifies the conjecture that IT nature is gradually replaced by that of EIT in DRT with the increase of elasticity.
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global public health crisis. The objectives of this study were to analyse the dynamic trend in specific antibodies in the serum of patients infected with SARS-CoV-2 within 12 months after recovery and to make a preliminary assessment of the protective effect of vaccination. Eighty-seven patients with confirmed COVID-19 who were admitted to our hospital from January to February 2020 were followed after recovery. Three-millilitre blood samples were collected for specific antibody detection at four time points: 1, 6 and 12 months after recovery and 1 month after vaccination. The changes in specific immunoglobulin G (IgG) antibody and total antibody levels over 12 months were analysed. Moreover, an independent comparison of the neutralising antibody levels of patients after vaccination with those of healthy medical staff after vaccination was performed to compare the inhibition rates of the neutralising antibody to the virus. No statistically significant difference in the sex distribution between groups was observed (P > 0.05). Older patients had a greater risk of developing severe and critical COVID-19 (P < 0.05). The percentages of subjects positive for IgG antibodies at 1, 6 and 12 months after recovery were 88.5%, 75.9% and 50.6%, respectively. The rate of IgG antibody conversion from positive to negative was not uniform across time points: the change was slow in the first 6 months but increased significantly in the last 6 months (P < 0.05). The positive rate of critically ill patients in the first 6 months was 100.0%. The trend over time in total antibody levels was similar to that of IgG antibody levels. Over 12 months, the sample/cut off value of total antibodies continued to decrease, while that of different disease severities was significantly different (P < 0.05). After vaccine administration, the total antibody level exceeded the detection level in the first month, which was independent of disease severity (P > 0.05). Significant differences were observed in the inhibition rate of the neutralising antibody against the virus in the disease group and the control group (P < 0.05). IgG antibody produced by patients naturally infected with SARS-CoV-2 has a duration of no less than 1 year, and the change trend graph of total antibody levels was the same as that of IgG antibody levels. Under vaccine stimulation, the positive rate of IgG antibody was as high as 100%, and the total antibody concentration reached the highest level, which was independent of disease severity. Neutralising antibodies following vaccination in patients who recovered from COVID-19 had a higher inhibition rate against SARS-CoV-2 than those of vaccinated healthy controls, indicating that these COVID-19 patients had a lower risk of reinfection and were better protected.
This study investigates the dynamics of low-viscosity nanodroplets impacting surfaces with static contact angles from θ = 73° to 180° via molecular dynamics (MD) simulations. Two typical morphologies of impacting nanodroplets are observed at the maximum spreading state, a Hertz-ball-like in a low-Weber-number range and a thin-film-like in a high-Weber-number range. Only inertial and capillary forces dominate the impact for the former, whereas viscous force also becomes dominant for the latter. Regardless of morphologies at the maximum spreading state, the ratio of spreading time to contact time always remains constant on an ideal superhydrophobic surface with θ = 180°. With the help of different kinematic approximations of the spreading time and scaling laws of the contact time, scaling laws of the maximum spreading factor ${\beta _{max}}\sim W{e^{1/5}}$ in the low-Weber-number range (capillary regime) and ${\beta _{max}}\sim W{e^{2/3}}R{e^{ - 1/3}}$ (or ${\beta _{max}}\sim W{e^{1/2}}O{h^{1/3}}$) in the high-Weber-number range (cross-over regime) are obtained. Here, We, Re, and Oh are the Weber number, Reynolds number, and Ohnesorge number, respectively. Although the scaling laws are proposed only for the ideal superhydrophobic surface, they are tested valid for θ over 73° owing to the ignorable zero-velocity spreading effect. Furthermore, combining the two scaling laws leads to an impact number, $W{e^{3/10}}O{h^{1/3}} = 2.1$. This impact number can be used to determine whether viscous force is ignorable for impacting nanodroplets, thereby distinguishing the capillary regime from the cross-over regime.
The Lochkovian (Lower Devonian) conodont biostratigraphy in China is poorly known, and conodont-based subdivision schemes for the Lochkovian in peri-Gondwana (the Spanish Central Pyrenees, the Prague Synform, Sardinia, and the Carnic Alps) have not been tested in China. Therefore, we studied conodonts from the lower part (Bed 9 to Bed 13) of the Shanjiang Formation at the Alengchu section of Lijiang, western Yunnan to test the application of established subdivision schemes. The conodont fauna is assignable to 12 taxa belonging to eight genera (Ancyrodelloides, Flajsella, Lanea, Wurmiella, Zieglerodina, Caudicriodus, Pelekysgnathus, and Pseudooneotodus), and enables recognition of two chronostratigraphical intervals from the lower part of the Shanjiang Formation. The interval ranging from the uppermost part of Bed 9 to the upper part of Bed 10 belongs to the lower Lochkovian; whereas an interval covering the uppermost part of Bed 11 to the upper part of Bed 13 is correlated with the upper half of the middle Lochkovian. The Silurian-Devonian boundary is probably located within Bed 9, in the basal part of the Shanjiang Formation. However, the scarcity of specimens precludes definitive identification of bases of the lower, middle, and upper Lochkovian as well as other conodont zones recognized in peri-Gondwana.
Laser–plasma accelerators (LPAs) have great potential to realize a compact X-ray free-electron laser (FEL), which is limited by the beam properties currently. Two-color high-intensity X-ray FEL provides a powerful tool for probing ultrafast dynamic systems. In this paper, we present a simple and feasible method to generate a two-color X-ray FEL pulse based on an LPA beam. In this scheme, time-dependent mismatch along the bunch is generated and manipulated by the designed lattice system, enabling FEL lasing at different wavelength within two undulator sections. The time separation between the two pulses can be precisely adjusted by varying the time-delay chicane. Numerical simulations show that two-color soft X-ray FELs with gigawatt-level peak power and femtosecond duration can be generated, which confirm the validity and feasibility of the scheme.
To generate optical vortex with multiple topological charges, a simple scheme based on the phase mask shaping technique is proposed and applied in a seeded free electron laser. With a tailored phase mask, an extreme-ultraviolet (EUV) vortex with multiple topological charges can be produced. To prove the feasibility of this method, an eight-step phase mask is designed to shape the seed laser. The simulation results demonstrate that 100-MW, fully coherent EUV vortex pulses with topological charge 2 can be generated based on the proposed technique. We have also demonstrated the possibility of generating higher topological charges by using a phase mask with more steps.
The orogenic process and crustal growth of the Changning–Menglian Palaeo-Tethys orogenic belt in the southeastern Tibetan Plateau is not fully understood. Triassic Caojian rhyolites and granites occur extensively in this orogenic belt and represent important constraints for this issue. This study aims to examine the relationships between the Triassic Caojian rhyolites and granites and to gain a better understanding of their possible petrogenesis. The study used zircon U–Pb geochronology, trace element analyses and Sr–Nd–Hf isotope data to better understand the relationships and possible origin of the rhyolites and granites. Recent zircon U–Pb ages indicated that the Caojian rhyolites were emplaced at 227.2 Ma, whereas age estimates for Caojian granites were slightly older (233.4–236.9 Ma). The Caojian rhyolites are enriched in large-ion lithophile elements and high-field-strength elements, with elevated FeOtot/MgO and Ga/Al ratios. However, they are significantly depleted in Ba, Sr, Eu, P and Ti. These geochemical characteristics indicate that they have an A-type affinity. Furthermore, the Caojian granites comprise biotite monzogranites and granodiorites and show unfractionated composition. Mineralogically, the Caojian granites were found to contain diagnostic I-type minerals such as hornblende. Geochemical data suggest that the petrogenesis of the Triassic Caojian rhyolites is characterized by rejuvenation of crystal mush represented by the Triassic Caojian granites. The necessary thermal input was supplied by mafic magma. This magmatic evolution was likely related to lithospheric delamination and upwelling of the asthenosphere during the Mid- to Late Triassic, forming post-collisional I-type granites and A-type volcanics in the Changning–Menglian Palaeo-Tethys orogenic belt.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
The effect of vitamin D (VD) on the risk of preeclampsia (PE) is uncertain. Few of previous studies focused on the relationship between dietary VD intake and PE risk. Therefore, we conducted this 1:1 matched case–control study to explore the association of dietary VD intake and serum VD concentrations with PE risk in Chinese pregnant women. A total of 440 pairs of participants were recruited during March 2016 to June 2019. Dietary information was obtained using a seventy-eight-item semi-quantitative FFQ. Serum concentrations of 25(OH)D2 and 25(OH)D3 were measured by liquid chromatography–tandem MS. Multivariate conditional logistic regression was used to estimate OR and 95 % CI. Restricted cubic splines (RCS) were plotted to evaluate the dose–response relationship of dietary VD intake and serum VD concentrations with PE risk. Compared with the lowest quartile, the OR of the highest quartile were 0·45 (95 % CI 0·29, 0·71, Ptrend = 0·001) for VD dietary intake and 0·26 (95 % CI 0·11, 0·60, Ptrend = 0·003) for serum levels after adjusting for confounders. In addition, the RCS analysis suggested a reverse J-shaped relationship between dietary VD intake and PE risk (P-nonlinearity = 0·02). A similar association was also found between serum concentrations of total 25(OH)D and PE risk (P-nonlinearity = 0·02). In conclusion, this study provides evidence that higher dietary intake and serum levels of VD are associated with the lower risk of PE in Chinese pregnant women.
To study the role of H i content in galaxy interactions, we select galaxy pairs and control galaxies from the SDSS-IV MaNGA IFU survey, adopting kinematic asymmetry as a new effective indicator to describe the merger stage. With archival data from the HI-MaNGA survey and new observations from the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we investigate the differences in H i gas fraction (fH i), star formation rate (SFR), and H i star formation efficiency (SFEH i) between pairs and controls. Our results suggest that on average the H i gas fraction of major-merger pairs is marginally decreased by ∼ 15% relative to isolated galaxies, and paired galaxies during pericentric passage show weakly decreased fH i (−0.10 ± 0.05 dex), significantly enhanced SFR (0.42 ± 0.11 dex), and SFEH i (0.48 ± 0.12 dex). We propose the marginally detected H i depletion may originate from the gas consumption in fueling the enhanced H2 reservoir of galaxy pairs.