We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop the time-dependent regularised 13-moment equations for general elastic collision models under the linear regime. Detailed derivation shows the proposed equations have super-Burnett order for small Knudsen numbers, and the moment equations enjoy a symmetric structure. A new modification of Onsager boundary conditions is proposed to ensure stability as well as the removal of undesired boundary layers. Numerical examples of one-dimensional channel flows is conducted to verified our model.
When an oblate droplet translates through a viscous fluid under linear shear, it experiences a lateral lift force whose direction and magnitude are influenced by the Reynolds number, the droplet’s viscosity and its aspect ratio. Using a recently developed sharp interface method, we perform three-dimensional direct numerical simulations to explore the evolution of lift forces on oblate droplets across a broad range of these parameters. Our findings reveal that in the low-but-finite Reynolds number regime, the Saffman mechanism consistently governs the lift force. The lift increases with the droplet’s viscosity, aligning with the analytical solution derived by Legendre & Magnaudet (Phys. Fluids, vol. 9, 1997, p. 3572), and also rises with the droplet’s aspect ratio. We propose a semi-analytical correlation to predict this lift force. In the moderate- to high-Reynolds-number regime, distinct behaviours emerge: the $L\hbox{-}$ and $S\hbox{-}$mechanisms, arising from the vorticity contained in the upstream shear flow and the vorticity produced at the droplet surface, dominate for weakly and highly viscous droplets, respectively. Both mechanisms generate counter-rotating streamwise vortices of opposite signs, leading to observed lift reversals with increasing droplet viscosity. Detailed force decomposition based on vorticity moments indicates that in the $L\hbox{-}$mechanism-dominated regime for weakly to moderately viscous droplets, the streamwise vorticity-induced lift approximates the total lift. Conversely, in the $S\hbox{-}$mechanism-dominated regime, for moderately to highly viscous droplets, the streamwise vorticity-induced lift constitutes only a portion of the total lift, with the asymmetric advection of azimuthal vorticity at the droplet interface contributing additional positive lift to counterbalance the $S\hbox{-}$mechanism’s effects. These insights bridge the understanding between inviscid bubbles and rigid particles, enhancing our comprehension of the lift force experienced by droplets in different flow regimes.
We study the melting process of a solid under microgravity, driven solely by lateral vibrations that are perpendicular to the applied temperature gradient due to the absence of gravity-induced convection. Using direct numerical simulations with the phase-field method, we examine two-dimensional vibration-induced melting in a square cavity over four orders of magnitude of vibrational Rayleigh numbers, $10^5\le Ra_{{vib}}\le 10^9$. Our results show that as melting progresses, the flow structure transitions from a periodic-circulation regime with diffusion-dominated heat transfer to a columnar regime with vibroconvection. The mean height of the liquid–solid interface follows a power-law dependency with time, $\bar {\xi } \sim \tilde t^{1/(2-2\alpha )}$, where $\alpha = 0$ in the periodic-circulation regime and $\alpha = 1/2$ in the columnar regime. We further observe that within the columnar regime, the morphological evolution of the liquid–solid interface is influenced by the interaction of columnar thermal plumes in the central regions and the peripheral flow near the sidewalls. Specifically, we offer a comprehensive analysis of the plume merging behaviour, which is governed by the aspect ratio ($\bar {\xi }$) of the liquid layer and the intensity of vibration, quantified by the effective vibrational Rayleigh number $Ra_{vib}^{eff}$. We identify the relationship between the number of columnar plumes $K_m$ and $Ra_{vib}^{eff}$, finding that $K_m \sim \bar {\xi }^{-1} (Ra_{vib}^{eff})^{\gamma }$ with the fitting scaling exponent $\gamma = 0.150 \pm 0.025$. We subsequently quantify the characteristics of the interface roughness amplitude evolution in microgravity vibroconvection. Our results indicate that the roughness amplitude exhibits a power-law dependence on the mean height of the liquid layer. Drawing from the Stefan boundary condition, we theoretically deduce this dependence under the assumption of a non-uniform heat flux distribution at the interface, where the theory is corroborated by our numerical simulations.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
Fast radio bursts (FRBs) are millisecond-duration radio waves from the Universe. Even though more than 50 physical models have been proposed, the origin and physical mechanism of FRB emissions are still unknown. The classification of FRBs is one of the primary approaches to understanding their mechanisms, but previous studies classified conventionally using only a few observational parameters, such as fluence and duration, which might be incomplete. To overcome this problem, we use an unsupervised machine-learning model, the Uniform Manifold Approximation and Projection to handle seven parameters simultaneously, including amplitude, linear temporal drift, time duration, central frequency, bandwidth, scaled energy, and fluence. We test the method for homogeneous 977 sub-bursts of FRB 20121102A detected by the Arecibo telescope. Our machine-learning analysis identified five distinct clusters, suggesting the possible existence of multiple different physical mechanisms responsible for the observed FRBs from the FRB 20121102A source. The geometry of the emission region and the propagation effect of FRB signals could also make such distinct clusters. This research will be a benchmark for future FRB classifications when dedicated radio telescopes such as the square kilometer array or Bustling Universe Radio Survey Telescope in Taiwan discover more FRBs than before.
Milk fat synthesis is tightly regulated by hormones and growth factors. Leptin is a versatile peptide hormone that exerts pleiotropic effects on metabolic pathways. In this study, we evaluated the expression and function of leptin and its long form receptor OB-Rb in dairy cow mammary tissues from different physiological stages and in cultured mammary epithelial cells. The results showed that the expression of leptin and OB-Rb were significantly higher in the mammary tissues of lactating cows as compared with dry cows, suggesting that they are related to milk component synthesis. In cultured dairy cow mammary epithelial cells, leptin treatment significantly increased OB-Rb expression and intracellular triacylglycerol content. Transcriptome analysis identified the difference in gene expression between leptin treated cells and control cells, and 317 differentially expressed genes were identified. Gene ontology and pathway mapping showed that lipid metabolism-related gene expression increased and signal transduction pathway-related genes were the most significantly enriched. Mechanistic studies showed that leptin stimulation enhanced sterol regulatory element-binding protein 1 expression via activating the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, which in turn up-regulated the expression of genes related to milk fat synthesis. Moreover, we found that fatty acid synthesis precursors, acetate and β-hydroxybutyrate, could positively regulate the expression of leptin and OB-Rb in bovine mammary epithelial cells, thereby potentially increasing milk fat synthesis. Our study provided novel evidence in the regulation of leptin on milk fat production in mammary glands of dairy cows, as well as experimental basis for artificial regulation of milk fat
Ridge B is one of the least studied areas in Antarctica but has been considered to be a potential location for the oldest ice on Earth. Among important parameters for calculating where very old ice may exist, geothermal heat flux (GHF) is critical but poorly understood. Here, GHF is determined by quantifying the transitions between dry and wet basal conditions using a radioglaciological method applied to airborne radio-echo sounding data. GHF is then constrained by a thermodynamic model matched to the transitions. The results show that GHF in Ridge B varies locally and ranges from 48.5 to 65.1 mW m−2, with an average value of 58.0 mW m−2, which is consistent with the current known GHF constrained by subglacial lakes and derived from Vostok ice core temperature measurements. Our work highlights the value of considering local GHF when locating the oldest ice in this potential region or other regions.
Species of epiphytic microbiota are closely associated with the fermentation performance of natural forage silage. This study aimed to evaluate the dynamic microbial communities, fermentation parameters, and aerobic stability of Napier grass silage from the same variety and growth period but harvested from three different regions (NGP1, NGP2, and NGP3). After 60 days of ensiling, triplicate silos were opened for sampling and testing aerobic stability. The epiphytic microbiota with higher relative abundances in fresh Napier grass (NGP1, NGP2, and NGP3) were Weissella, Enterobacter, and Lactococcus, respectively. After 60 days of ensiling, NGP3 exhibited higher fermentation quality, indicated by higher lactic acid (LA) concentration and lower pH than that of NGP1 and NGP2. The NH3–N content of all treatments was lower than 100 g/kg total nitrogen. Compared with NGP1 and NGP2 silage, NGP3 silage exhibited a sharp rise in pH and LA consumption during air exposure. After 7 days of air exposure, NGP3 had higher ethanol concentrations and pH. Ruminiclostridium_5, Pediococcus, and Lactobacillus predominated in NGP1, NGP2, and NGP3 silages, respectively, whereas Candida and Monascus predominated in air-exposed NGP3 silage. The bacterial co-occurrence networks from fresh samples to ensiling and air exposure became more complex; however, NGP3 had a higher negative correlation with co-occurrence after air exposure. Different regions had significant effects on the fermentation patterns, bacterial communities, and aerobic stability of Napier grass silage. This was mainly due to variable epiphytic microbiota. Higher fermentation quality of Napier grass silage may also result in accelerated spoilage due to air exposure. Candida and Monascus were primarily responsible for the lower dry matter recovery and higher ethanol contents and air exposure spoilage of Napier grass silage.
We report the unified constitutive law of vibroconvective turbulence in microgravity, i.e. $Nu \sim a^{-1} Re_{os}^\beta$ where the Nusselt number $Nu$ measures the global heat transport, $a$ is the dimensionless vibration amplitude, $Re_{os}$ is the oscillational Reynolds number and $\beta$ is the universal exponent. We find that the dynamics of boundary layers plays an essential role in vibroconvective heat transport and the $Nu$-scaling exponent $\beta$ is determined by the competition between the thermal boundary layer (TBL) and vibration-induced oscillating boundary layer (OBL). Then a physical model is proposed to explain the change of scaling exponent from $\beta =2$ in the TBL-dominant regime to $\beta = 4/3$ in the OBL-dominant regime. Our finding elucidates the emergence of universal constitutive laws in vibroconvective turbulence, and opens up a new avenue for generating a controllable effective heat transport under microgravity or even microfluidic environment in which the gravity effect is nearly absent.
Let $\mathcal {M}$ be an Ahlfors $n$-regular Riemannian manifold such that either the Ricci curvature is non-negative or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. In the paper [IMRN, 2022, no. 2, 1245-1269] of Brazke–Schikorra–Sire, the authors characterised the BMO function $u : \mathcal {M} \to \mathbb {R}$ by a Carleson measure condition of its $\sigma$-harmonic extension $U:\mathcal {M}\times \mathbb {R}_+ \to \mathbb {R}$. This paper is concerned with the similar problem under a more general Dirichlet metric measure space setting, and the limiting behaviours of BMO & Carleson measure, where the heat kernel admits only the so-called diagonal upper estimate. More significantly, without the Ricci curvature condition, we relax the Ahlfors regularity to a doubling property, and remove the pointwise bound on the gradient of the heat kernel. Some similar results for the Lipschitz function are also given, and two open problems related to our main result are considered.
This paper presents a language, Alda, that supports all of logic rules, sets, functions, updates, and objects as seamlessly integrated built-ins. The key idea is to support predicates in rules as set-valued variables that can be used and updated in any scope, and support queries using rules as either explicit or implicit automatic calls to an inference function. We have defined a formal semantics of the language, implemented a prototype compiler that builds on an object-oriented language that supports concurrent and distributed programming and on an efficient logic rule system, and successfully used the language and implementation on benchmarks and problems from a wide variety of application domains. We describe the compilation method and results of experimental evaluation.
Straightplasma channels are widely used to guide relativistic intense laser pulses over several Rayleigh lengths for laser wakefield acceleration. Recently, a curved plasma channel with gradually varied curvature was suggested to guide a fresh intense laser pulse and merge it into a straight channel for staged wakefield acceleration [Phys. Rev. Lett. 120, 154801 (2018)]. In this work, we report the generation of such a curved plasma channel from a discharged capillary. Both longitudinal and transverse density distributions of the plasma inside the channel were diagnosed by analyzing the discharging spectroscopy. Effects of the gas-filling mode, back pressure and discharging voltage on the plasma density distribution inside the specially designed capillary are studied. Experiments show that a longitudinally uniform and transversely parabolic plasma channel with a maximum channel depth of 47.5 μm and length of 3 cm can be produced, which is temporally stable enough for laser guiding. Using such a plasma channel, a laser pulse with duration of 30 fs has been successfully guided along the channel with the propagation direction bent by 10.4°.
We present a high-energy, hundred-picosecond (ps) pulsed mid-ultraviolet solid-state laser at 266 nm by a direct second harmonic generation (SHG) in a barium borate (BaB2O4, BBO) nonlinear crystal. The green pump source is a 710 mJ, 330 ps pulsed laser at a wavelength of 532 nm with a repetition rate of 1 Hz. Under a green pump energy of 710 mJ, a maximum output energy of 253.3 mJ at 266 nm is achieved with 250 ps pulse duration resulting in a peak power of more than 1 GW, corresponding to an SHG conversion efficiency of 35.7% from 532 to 266 nm. The experimental data were well consistent with the theoretical prediction. To the best of our knowledge, this laser exhibits both the highest output energy and highest peak power ever achieved in a hundred-ps/ps regime at 266 nm for BBO-SHG.
A growing number of Chinese firms motivate their employees through employee stock ownership plans (ESOPs). Using a sample of listed firms in China, this paper examines the impact of ESOPs on firms’ total factor productivity (TFP), as well as the mechanisms of ESOPs. The empirical results show that ESOPs have a positive impact on firm TFP. The mechanism tests convey that ESOPs increase firm TFP by promoting research and development (R&D) investment and mitigating agency costs. These results are robust after accounting for endogeneity and using alternative metrics of TFP. In addition, we find that the positive effect of ESOPs on firm TFP is more pronounced in non-state-owned firms and firms with a less severe free-riding problem. Furthermore, the effect on firm TFP is positively associated with the subscription proportion of non-executive employees in ESOPs. Overall, the results of this study underscore the important role of employee ownership in firms’ productivity improvement.
High-power continuous-wave ultraviolet lasers are useful for many applications. As ultraviolet laser sources, the wavelength switching capability and compact structure are very important to extend the applicability and improve the flexibility in practical applications. In this work, we present two simple and relatively compact schemes by laser diode pumping to obtain a watt-level single-wavelength 348.7-nm laser and discrete wavelength tunable ultraviolet lasers around 349 nm (from 334.7 to 364.5 nm) by intracavity frequency doubling based on Pr3+:YLF and $\unicode{x3b2}$-BBO crystals. The maximum output power of the single-wavelength 348.7-nm laser is 1.033 W. The output powers of the discrete wavelength tunable lasers are at the level of tens of milliwatts, except for two peaks at 348.7 and 360.3 nm with output powers of approximately 500 mW. In addition, simulations are carried out to explain the experimental results and clarify the tuning mechanisms.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
Different kinds of waves and instabilities in the F-region of the ionosphere excited by the relative streaming of the dust beam to the background plasma are studied in the present paper. The dispersion relations of different waves are obtained on different time scales. It is found from our numerical results that there are both a stable upper hybrid wave on the electron vibration time scale and a stable dust ion cyclotron wave on the ion vibration time scale. However, the chaotic behaviour appears on the dust particles vibration time scale due to the relative streaming of the dust particles to the background plasma. Such instabilities may drive plasma irregularities that could affect radar backscatter from the clouds.
Listeriosis is a rare but serious foodborne disease caused by Listeria monocytogenes. This matched case–control study (1:1 ratio) aimed to identify the risk factors associated with food consumption and food-handling habits for the occurrence of sporadic listeriosis in Beijing, China. Cases were defined as patients from whom Listeria was isolated, in addition to the presence of symptoms, including fever, bacteraemia, sepsis and other clinical manifestations corresponding to listeriosis, which were reported via the Beijing Foodborne Disease Surveillance System. Basic patient information and possible risk factors associated with food consumption and food-handling habits were collected through face-to-face interviews. One hundred and six cases were enrolled from 1 January 2018 to 31 December 2020, including 52 perinatal cases and 54 non-perinatal cases. In the non-perinatal group, the consumption of Chinese cold dishes increased the risk of infection by 3.43-fold (95% confidence interval 1.27–9.25, χ2 = 5.92, P = 0.02). In the perinatal group, the risk of infection reduced by 95.2% when raw and cooked foods were well-separated (χ2 = 5.11, P = 0.02). These findings provide important scientific evidence for preventing infection by L. monocytogenes and improving the dissemination of advice regarding food safety for vulnerable populations.