We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the melting process of a solid under microgravity, driven solely by lateral vibrations that are perpendicular to the applied temperature gradient due to the absence of gravity-induced convection. Using direct numerical simulations with the phase-field method, we examine two-dimensional vibration-induced melting in a square cavity over four orders of magnitude of vibrational Rayleigh numbers, $10^5\le Ra_{{vib}}\le 10^9$. Our results show that as melting progresses, the flow structure transitions from a periodic-circulation regime with diffusion-dominated heat transfer to a columnar regime with vibroconvection. The mean height of the liquid–solid interface follows a power-law dependency with time, $\bar {\xi } \sim \tilde t^{1/(2-2\alpha )}$, where $\alpha = 0$ in the periodic-circulation regime and $\alpha = 1/2$ in the columnar regime. We further observe that within the columnar regime, the morphological evolution of the liquid–solid interface is influenced by the interaction of columnar thermal plumes in the central regions and the peripheral flow near the sidewalls. Specifically, we offer a comprehensive analysis of the plume merging behaviour, which is governed by the aspect ratio ($\bar {\xi }$) of the liquid layer and the intensity of vibration, quantified by the effective vibrational Rayleigh number $Ra_{vib}^{eff}$. We identify the relationship between the number of columnar plumes $K_m$ and $Ra_{vib}^{eff}$, finding that $K_m \sim \bar {\xi }^{-1} (Ra_{vib}^{eff})^{\gamma }$ with the fitting scaling exponent $\gamma = 0.150 \pm 0.025$. We subsequently quantify the characteristics of the interface roughness amplitude evolution in microgravity vibroconvection. Our results indicate that the roughness amplitude exhibits a power-law dependence on the mean height of the liquid layer. Drawing from the Stefan boundary condition, we theoretically deduce this dependence under the assumption of a non-uniform heat flux distribution at the interface, where the theory is corroborated by our numerical simulations.
Drug use Disorder (DUD), the risk for which is substantially influenced by both genetic and social factors, is geographically concentrated in high-risk regions. An important step toward understanding this pattern is to examine geographical distributions of the genetic liability to DUD and a key demographic risk factor – social deprivation.
Methods
We calculated the mean family genetic risk score (FGRS) for DUD ((FGRSDUD) and social deprivation for each of the 5983 areas Demographic Statistical Areas (DeSO) for all of Sweden and used geospatial techniques to analyze and map these factors.
Results
Using 2018 data, substantial spatial heterogeneity was seen in the distribution of the genetic risk for DUD in Sweden as a whole and in its three major urban centers which was confirmed by hot-spot analyses. Across DeSOs, FGRSDUD and s.d. levels were substantially but imperfectly correlated (r = + 0.63), with more scattering at higher FGRSDUD and s.d. scores. Joint mapping across DeSOs for FGRSDUD and s.d. revealed a diversity of patterns across Sweden. The stability of the distributions of FGRSDUD and s.d. in DeSOs within Sweden over the years 2012–2018 was quite high.
Conclusions
The geographical distribution of the genetic risk to DUD is quite variable in Sweden. DeSO levels of s.d. and FRGSDUD were substantially correlated but also disassociated in a number of regions. The observed patterns were largely consistent with known trends in the human geography of Sweden. This effort lays the groundwork for further studies of the sources of geographic variation in rates of DUD.
Characterised by the extensive use of obsidian, a blade-based tool inventory and microblade technology, the late Upper Palaeolithic lithic assemblages of the Changbaishan Mountains are associated with the increasingly cold climatic conditions of Marine Isotope Stage 2, yet most remain poorly dated. Here, the authors present new radiocarbon dates associated with evolving blade and microblade toolkits at Helong Dadong, north-east China. At 27 300–24 100 BP, the lower cultural layers contain some of the earliest microblade technology in north-east Asia and highlight the importance of the Changbaishan Mountains in understanding changing hunter-gatherer lifeways in this region during MIS 2.
MicroRNAs (miRNAs) are endogenous, non-coding RNAs, which are functional in a variety of biological processes through post-transcriptional regulation of gene expression. However, the role of miRNAs in the interaction between Bacillus thuringiensis and insects remains unclear. In this study, small RNA libraries were constructed for B. thuringiensis-infected (Bt) and uninfected (CK) Spodoptera exigua larvae (treated with double-distilled water) using Illumina sequencing. Utilising the miRDeep2 and Randfold, a total of 233 known and 726 novel miRNAs were identified, among which 16 up-regulated and 34 down-regulated differentially expressed (DE) miRNAs were identified compared to the CK. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that potential target genes of DE miRNAs were associated with ABC transporters, fatty acid metabolism and MAPK signalling pathway which are related to the development, reproduction and immunity. Moreover, two miRNA core genes, SeDicer1 and SeAgo1 were identified. The phylogenetic tree showed that lepidopteran Dicer1 clustered into one branch, with SeDicer1 in the position closest to Spodoptera litura Dicer1. A similar phylogenetic relationship was observed in the Ago1 protein. Expression of SeDicer1 increased at 72 h post infection (hpi) with B. thuringiensis; however, expression of SeDicer1 and SeAgo1 decreased at 96 hpi. The RNAi results showed that the knockdown of SeDicer1 directly caused the down-regulation of miRNAs and promoted the mortality of S. exigua infected by B. thuringiensis GS57. In conclusion, our study is crucial to understand the relationship between miRNAs and various biological processes caused by B. thuringiensis infection, and develop an integrated pest management strategy for S. exigua via miRNAs.
Deep learning (DL) has been widely used in bearing fault diagnosis. In particular, convolutional neural networks (CNNs) improve diagnosis accuracy by extracting excellent fault features. However, CNN lacks an explicit learning mechanism to distinguish between different fault characteristics in the input signal to the diagnosis results. This article presents a new end-to-end depth framework called multi-head self-attention convolution neural network (MSA-CNN) for bearing fault diagnosis. Firstly, we adopt a data pre-processing method that directly converts one-dimensional (1D) original signals into two-dimensional (2D) grayscale images, which is simple to implement and preserves the complete information of the original signal. Secondly, multi-head self-attention (MSA) is first constructed to aggregate the global information and adaptively assign weights to the input signal's features. Thirdly, the CNN with small-scale kernels extracted detailed local features. Finally, the learned high-level representations are fed into the full connect (FC) layer for fault diagnosis. The performance of the MSA-CNN is validated on different datasets. The results show that the proposed MSA-CNN can significantly improve fault diagnosis accuracy compared with the other state-of-the-art methods and has excellent noise immunity performance.
We report the unified constitutive law of vibroconvective turbulence in microgravity, i.e. $Nu \sim a^{-1} Re_{os}^\beta$ where the Nusselt number $Nu$ measures the global heat transport, $a$ is the dimensionless vibration amplitude, $Re_{os}$ is the oscillational Reynolds number and $\beta$ is the universal exponent. We find that the dynamics of boundary layers plays an essential role in vibroconvective heat transport and the $Nu$-scaling exponent $\beta$ is determined by the competition between the thermal boundary layer (TBL) and vibration-induced oscillating boundary layer (OBL). Then a physical model is proposed to explain the change of scaling exponent from $\beta =2$ in the TBL-dominant regime to $\beta = 4/3$ in the OBL-dominant regime. Our finding elucidates the emergence of universal constitutive laws in vibroconvective turbulence, and opens up a new avenue for generating a controllable effective heat transport under microgravity or even microfluidic environment in which the gravity effect is nearly absent.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.
Direct numerical simulations have been conducted to investigate turbulent Rayleigh– Bénard convection (RBC) of liquid metal in a cuboid vessel with aspect ratio $\varGamma =5$ under an imposed horizontal magnetic field. Flows with Prandtl number $Pr=0.033$, Rayleigh numbers ranging up to $Ra\leq 10^{7}$, and Chandrasekhar numbers up to $Q\leq 9 \times 10^6$ are considered. For weak magnetic fields, our findings reveal that a previously undiscovered decreasing region precedes the enhancement of heat transfer and kinetic energy. For moderate magnetic fields, we have reproduced the reversals of the large-scale flow, which are considered a reorganization process of the roll-like structures that were reported experimentally by Yanagisawa et al. (Phys. Rev. E, vol. 83, 2011, 036307). Nevertheless, the proposed approach of skewed-varicose instability has been substantiated as insufficient to elucidate fundamentally the phenomenon of flow reversal, an occurrence bearing a striking resemblance to the large-scale intermittency observed in magnetic channel flows. As we increase the magnetic field strength further, we observe that the energy dissipation of the system comes primarily from the viscous dissipation within the boundary layer. Consequently, the dependence of Reynolds number $Re$ on $Q$ approaches a scaling as $Re\,Pr/Ra^{2/3} \sim Q^{-1/3}$. At the same time, we find the law for the cutoff frequency that separates large quasi-two-dimensional scales from small three-dimensional ones in RBC flow, which scales with the interaction parameter as ${\sim }N^{1/3}$.
Beam–target reactions in fusion plasmas play an important role in both magnetic confinement fusion and inertial confinement fusion in the condition of low-density plasmas with high-velocity interactions. The traditional method for calculating beam–target reaction rate neglects the transport process of incident particles in inhomogeneous plasmas, leading to errors providing that the temperature and density in the transport path of incident particles vary obviously. An improved method considering the transport process is proposed in this paper to eliminate the deficiencies. Then the method is employed in high-speed plasma collision studies. When the initial plasma density and temperature are set to $0.5\,{\rm g}\,{\rm cm}^{-3}$ and 100 eV, it is found that the beam–target reaction rate calculated by the traditional method is almost identical to that by our method if the collision velocity is less than 600 km s$^{-1}$. However, the traditional method is not suitable for study as the collision velocity gets higher, inducing obvious differences, which can reach 70 % at 1000 km s$^{-1}$. The improved method will make large corrections to evaluate the importance of the non-negligible beam–target reaction for inertial confinement fusion schemes with large implosion velocity such as double-cone ignition and impact ignition, in which the high-speed plasmas collide with each other to realize plasma ignition.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
This study investigates the effect of vibration on the flow structure transitions in thermal vibrational convection (TVC) systems, which occur when a fluid layer with a temperature gradient is excited by vibration. Direct numerical simulation (DNS) of TVC in a two-dimensional enclosed square box is performed over a range of dimensionless vibration amplitudes $0.001 \le a \le 0.3$ and angular frequencies $10^{2} \le \omega \le 10^{7}$, with a fixed Prandtl number of 4.38. The flow visualisation shows the transition behaviour of flow structure upon the varying frequency, characterising three distinct regimes, which are the periodic-circulation regime, columnar regime and columnar-broken regime. Different statistical properties are distinguished from the temperature and velocity fluctuations at the boundary layer and mid-height. Upon transition into the columnar regime, columnar thermal coherent structures are formed, in contrast to the periodic oscillating circulation. These columns are contributed by the merging of thermal plumes near the boundary layer, and the resultant thermal updrafts remain at almost fixed lateral position, leading to a decrease in fluctuations. We further find that the critical point of this transition can be described nicely by the vibrational Rayleigh number ${{Ra}}_{vib}$. As the frequency continues to increase, entering the so-called columnar-broken regime, the columnar structures are broken, and eventually the flow state becomes a large-scale circulation (LSC), characterised by a sudden increase in fluctuations. Finally, a phase diagram is constructed to summarise the flow structure transition over a wide range of vibration amplitude and frequency parameters.
In contrast to Western platforms, which are dominated by crowdsourced labour, China's food-delivery platforms rely heavily on outsourced couriers to provide high-quality services. The conflicts emerging from outsourced labour relations have been inadequately examined. Based on extensive fieldwork in south China, this study reveals an intriguing fact: the outsourcing model frequently triggers yet largely conceals couriers’ strikes. This study uses the work regime approach and labour bargaining power theory to analyse the complex dynamics created by the platforms. By scrutinizing state institutions, relationships among various organizations and workplace interactions, this study finds that the platform firms have dominant power but that inherent tensions exist between outsourcing platform firms, outsourced agencies, human supervisors and workers, forming a regime that this study calls “contentious despotism.” Importantly, labour conflict is alive and potentially enduring in China's gigantic platform economy.
Seed coat colour in adzuki bean is an important quality trait and closely associated with anthocyanin metabolism pathways. To further understand the inheritance of seed coat colour pattern, the inheritance between multiple seed coat colours and ivory seed were analysed using F1:2, F2:3 and F3:4 populations derived from five bi-parental crosses. The differences between ivory and red mottle on ivory are controlled by a single recessive R locus and RI locus, respectively. Green, light brown and golden are all dominant to red and governed by two loci. The B (brown) locus shows dominant epistasis over T locus. The R (red) locus was recessive epistasis to B (black), T (light brown), G (golden), GR (green) and RI (red mottle on ivory) loci. The new insight into the strong recessive epistasis of the R locus will be important for gene mapping and cloning, candidate gene functional validation and quality improvement in adzuki bean.
The collection of facial action data is essential for the accurate evaluation of a patient’s condition in the intensive care unit, such as pain evaluation. An automatic face-tracking system is demanded to reduce the burden of data collection on the medical staff. However, many previous studies assume that the optimal trajectory of a robotic tracking system is reachable which is inapplicable for large-amplitude head motions. To tackle this problem, we propose a region-based face-tracking algorithm for large-amplitude head motion with a 7-DOF manipulator. A configuration-based optimization algorithm is proposed to trade-off between theoretical optimal pose and workspace constraints through the assignment of importance weights. To increase the probability of recapturing the face exceeding the reachable workspace of the manipulator, the camera is directed toward the center of the head, named the facial orientation center (FOC) constraint. Furthermore, a region-based tracking approach is designed to stabilize the manipulator for small amplitude head motions and smooth the tracking trajectory by adjusting the joint angle in the null space of the 7-DOF manipulator. Experimental results demonstrate the effectiveness of the proposed algorithm in tracking performance and finding an appropriate configuration for the unreachable theoretical optimal configuration. Moreover, the proposed algorithm with FOC constraint can successfully follow the head motion as losing 33.2% of the face during the tracking.
The Wood Snipe Gallinago nemoricola is one of the least known shorebird species, and its habitat associations are very poorly understood. Here we provide the first assessment of the habitat use of the Wood Snipe during the breeding season. Between May and July 2021 at a 4-km2 alpine meadow in Sichuan province, China, we conducted population surveys and behavioural observations to identify sites where breeding Wood Snipe occurred and foraged. We quantified the habitat characteristics and food resource availability of these sites and compared them with randomly selected “background” sites. Comparison between 34 occurrence sites and 25 background sites indicated that during the breeding season, Wood Snipes are not distributed evenly across alpine meadow habitats, but preferred habitats in the lower part (3,378–3,624 m) of the alpine meadow with intermediate levels of soil moisture. In addition, comparison between 17 foraging sites and 24 background sites showed that the Wood Snipe tended to forage at sites with higher soil fauna abundance. We found weak evidence for denser vegetation cover at its height and no evidence for other biotic habitat variables such as vegetation composition or other abiotic habitat variables such as slope, soil penetrability, or disturbance level to influence Wood Snipe habitat associations. Our results suggest that the actual distribution range of the Wood Snipe during the breeding season may be smaller than expected from the extent of apparently suitable habitat. We advise caution in evaluating the potential habitat availability and distribution of the Wood Snipe, and call for further research to better understand the ecology of this rare species to inform its conservation.
We report that vertical vibration with small amplitude and high frequency can tame convective heat transport in Rayleigh–Bénard convection in a turbulent regime. When vertical vibration is applied, a dynamically averaged ‘anti-gravity’ results that stabilizes the thermal boundary layer and inhibits the eruption of thermal plumes. This eventually leads to the attenuation of the intensity of large-scale mean flow and a significant suppression of turbulent heat transport. Accounting for both the thermally led buoyancy and the vibration-induced anti-gravitational effects, we propose an effective Rayleigh number that helps to extend the Grossmann–Lohse theory to thermal vibrational turbulence. The prediction of the reduction on both the Nusselt and Reynolds numbers obtained by the extended model is found to agree well with the numerical data. In addition, vibrational influences on the mean flow structure and the temporal evolution of Nusselt and Reynolds numbers are investigated. The non-uniform characteristic of vibration-induced ‘anti-gravity’ is discussed. The present findings provide a powerful basis for studying thermal vibrational turbulence and put forward a novel strategy for actively controlling thermal turbulence.
The Nanjing Bao'ensi site is the largest and highest-ranking royal temple from the Ming Dynasty, and it is famous for its full-body glass pagoda. In this study, the glazed tiles excavated from the southern area of the Bao'ensi site were selected and analysed using X-ray diffraction, thermal dilation and energy-dispersive X-ray fluorescence to determine their phase composition, firing temperature and chemical composition. The glazed tile bodies of the Bao'ensi site consist mainly of quartz and mullite, although some samples contain trace amounts of other minerals. All of the body samples were fired to the same temperature range (i.e. 1000–1100°C). The firing temperature combined with the phase composition indicate that the raw materials and firing process of the glazed tile body samples have similarities, but there are certain differences. The source of the raw materials for a portion of the glazed tile bodies is Dangtu, Anhui, whilst the source of the raw materials for the remaining materials remains to be discovered.