Historically, the advent of robotics has important roots in metallurgy. The first industrial robot, Unimate, was used by General Motors to handle hot metal—transporting die castings and welding them to an automotive body. Now, nearly 60 years later, metallurgical use of robotics is still largely confined to automation of dangerous, complex, and repetitive tasks. Beyond metallurgy, the field of autonomy is undergoing a renaissance, impacting applications from pharmaceuticals to transportation. In this article, we review the emerging elements of high-throughput experimental automation, which, when combined with artificial intelligence or machine-learning systems, will enable autonomous discovery of novel alloys and process routes.