We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and etiological subtypes. There are several challenges to integrating symptom data from genetically informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data.
Methods
We conducted genome-wide association studies of major depressive symptoms in three cohorts that were enriched for participants with a diagnosis of depression (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts who were not recruited on the basis of diagnosis (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors.
Results
The best fitting model had a distinct factor for Appetite/Weight symptoms and an additional measurement factor that accounted for the skip-structure in community cohorts (use of Depression and Anhedonia as gating symptoms).
Conclusion
The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analyzing genetic association data.
Progress towards understanding the aetiology of major depression is compromised by its clinical heterogeneity. The variety of contexts underlying the development of a major depressive episode may contribute to such heterogeneity.
Aims
To compare risk factor profiles for three subgroups of major depression according to episode context.
Method
Using self-report questionnaires and administrative records from the UK Biobank, we characterised three contextual subgroups of major depression: postpartum depression (3581 cases), depression following diagnosis of a chronic disease (409 cases) and a more typical (named heterogeneous) major depression phenotype excluding the two other contexts (34 699 cases). Controls with the same exposure were also defined. We tested each subgroup for association with the polygenic risk scores (PRS) for major depression and with other risk factors previously associated with major depression (bipolar disorder PRS, neuroticism, reported trauma in childhood and adulthood, socioeconomic status, family history of depression, education).
Results
Major depression PRS was associated with all subgroups, but postpartum depression cases had higher PRS than heterogeneous major depression cases (OR = 1.06, 95% CI 1.02–1.10). Relative to heterogeneous depression, postpartum depression was more weakly associated with adulthood trauma and neuroticism. Depression following diagnosis of a chronic disease had weaker association with neuroticism and reported trauma in adulthood and childhood relative to heterogeneous depression.
Conclusions
The observed differences in risk factor profiles according to the context of a major depressive episode help provide insight into the heterogeneity of depression. Future studies dissecting such heterogeneity could help reveal more refined aetiological insights.
Mood disorders are characterised by pronounced symptom heterogeneity, which presents a substantial challenge both to clinical practice and research. Identification of subgroups of individuals with homogeneous symptom profiles that cut across current diagnostic categories could provide insights in to the transdiagnostic relevance of individual symptoms, which current categorical diagnostic systems cannot impart.
Aims
To identify groups of people with homogeneous clinical characteristics, using symptoms of manic and/or irritable mood, and explore differences between groups in diagnoses, functional outcomes and genetic liability.
Method
We used latent class analysis on eight binary self-reported symptoms of manic and irritable mood in the UK Biobank and PROTECT studies, to investigate how individuals formed latent subgroups. We tested associations between the latent classes and diagnoses of psychiatric disorders, sociodemographic characteristics and polygenic risk scores.
Results
Five latent classes were derived in UK Biobank (N = 42 183) and were replicated in the independent PROTECT cohort (N = 4445), including ‘minimally affected’, ‘inactive restless’, active restless’, ‘focused creative’ and ‘extensively affected’ individuals. These classes differed in disorder risk, polygenic risk score and functional outcomes. One class that experienced disruptive episodes of mostly irritable mood largely comprised cases of depression/anxiety, and a class of individuals with increased confidence/creativity reported comparatively lower disruptiveness and functional impairment.
Conclusions
Findings suggest that data-driven investigations of psychopathological symptoms that include sub-diagnostic threshold conditions can complement research of clinical diagnoses. Improved classification systems of psychopathology could investigate a weighted approach to symptoms, toward a more dimensional classification of mood disorders.
Major depression (MD) is often characterised as a categorical disorder; however, observational studies comparing sub-threshold and clinical depression suggest MD is continuous. Many of these studies do not explore the full continuum and are yet to consider genetics as a risk factor. This study sought to understand if polygenic risk for MD could provide insight into the continuous nature of depression.
Methods
Factor analysis on symptom-level data from the UK Biobank (N = 148 957) was used to derive continuous depression phenotypes which were tested for association with polygenic risk scores (PRS) for a categorical definition of MD (N = 119 692).
Results
Confirmatory factor analysis showed a five-factor hierarchical model, incorporating 15 of the original 18 items taken from the PHQ-9, GAD-7 and subjective well-being questionnaires, produced good fit to the observed covariance matrix (CFI = 0.992, TLI = 0.99, RMSEA = 0.038, SRMR = 0.031). MD PRS associated with each factor score (standardised β range: 0.057–0.064) and the association remained when the sample was stratified into case- and control-only subsets. The case-only subset had an increased association compared to controls for all factors, shown via a significant interaction between lifetime MD diagnosis and MD PRS (p value range: 2.23 × 10−3–3.94 × 10−7).
Conclusions
An association between MD PRS and a continuous phenotype of depressive symptoms in case- and control-only subsets provides support against a purely categorical phenotype; indicating further insights into MD can be obtained when this within-group variation is considered. The stronger association within cases suggests this variation may be of particular importance.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.