We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
This article reviews the current state of magnetic resonance imaging techniques as applied to bipolar disorder. Addressed are conventional methods of structural neuroimaging and recently developed techniques. This latter group comprises volumetric analysis, voxel-based morphometry, the assessment of T2 white matter hyperintensities, shape analysis, cortical surface-based analysis, and diffusion tensor imaging. Structural analysis methods used in magnetic resonance imaging develop exponentially, and now present opportunities to identify disease-specific neuroanatomic alterations. Greater acuity and complementarity in measuring these alterations has led to the generation of further hypotheses regarding the pathophysiology of bipolar disorder. Included in the summary of findings is consideration of a resulting neuroanatomic model. Integrative issues and future directions in this relatively young field, including multi-modal approaches enabling us to produce more comprehensive results, are discussed.
This article presents results from the first 3 rounds of an international intercomparison of measurements of Δ14CO2 in liter-scale samples of whole air by groups using accelerator mass spectrometry (AMS). The ultimate goal of the intercomparison is to allow the merging of Δ14CO2 data from different groups, with the confidence that differences in the data are geophysical gradients and not artifacts of calibration. Eight groups have participated in at least 1 round of the intercomparison, which has so far included 3 rounds of air distribution between 2007 and 2010. The comparison is intended to be ongoing, so that: a) the community obtains a regular assessment of differences between laboratories; and b) individual laboratories can begin to assess the long-term repeatability of their measurements of the same source air. Air used in the intercomparison was compressed into 2 high-pressure cylinders in 2005 and 2006 at Niwot Ridge, Colorado (USA), with one of the tanks “spiked” with fossil CO2, so that the 2 tanks span the range of Δ14CO2 typically encountered when measuring air from both remote background locations and polluted urban ones. Three groups show interlaboratory comparability within l% for ambient level Δ14CO2. For high CO2/low Δ14CO2 air, 4 laboratories showed comparability within 2%. This approaches the goals set out by the World Meteorological Organization (WMO) CO2 Measurements Experts Group in 2005. One important observation is that single-sample precisions typically reported by the AMS community cannot always explain the observed differences within and between laboratories. This emphasizes the need to use long-term repeatability as a metric for measurement precision, especially in the context of long-term atmospheric monitoring.
Email your librarian or administrator to recommend adding this to your organisation's collection.