We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hospitalizations for acute bacterial skin and skin structure infection (ABSSSI) are common. Optimizing antibiotic use for ABSSSIs requires an understanding of current management. The objective of this study was to evaluate antibiotic prescribing practices and factors affecting prescribing in a diverse group of hospitals
Design.
Multicenter, retrospective cohort study.
Setting.
Seven community and academic hospitals.
Methods.
Children and adults hospitalized between June 2010 and May 2012 for cellulitis, wound infection, or cutaneous abscess were eligible. The primary endpoint was a composite of 2 prescribing practices representing potentially avoidable antibiotic exposure: (1) use of antibiotics with a broad spectrum of activity against gram-negative bacteria or (2) treatment duration greater than 10 days.
Results.
A total of 533 cases were included: 320 with nonpurulent cellulitis, 44 with wound infection or purulent cellulitis, and 169 with abscess. Of 492 cases with complete prescribing data, the primary endpoint occurred in 394 (80%) cases and varied significantly across hospitals (64%–97%; P < .001). By logistic regression, independent predictors of the primary endpoint included wound infection or purulent cellulitis (odds ratio [OR], 5.12 [95% confidence interval (CI)], 1.46–17.88), head or neck involvement (OR, 2.83 [95% CI, 1.17–6.82]), adult cases (OR, 2.20 [95% CI, 1.18–4.11]), and admission to a community hospital (OR, 1.90 [95% CI, 1.05–3.44]).
Conclusions.
Among patients hospitalized for ABSSSI, use of antibiotics with broad gram-negative activity or treatment courses longer than 10 days were common. There may be substantial opportunity to reduce antibiotic exposure through shorter courses of therapy targeting gram-positive bacteria.
Infect Control Hosp Epidemiol 2014;35(10):1241–1250
To describe the epidemiology of bloodstream infection caused by USA300 strains of methicillin-resistant Staphylococcus aureus (MRSA), which are traditionally associated with cases of community-acquired infection, in the healthcare setting.
Design.
Retrospective cohort study.
Setting.
Three academically affiliated hospitals in Denver, Colorado.
Methods.
Review of cases of S. aureus bloodstream infection during the period from 2003 through 2007. Polymerase chain reaction was used to identify MRSA USA300 isolates.
Results.
A total of 330 cases of MRSA bloodstream infection occurred during the study period, of which 286 (87%) were healthcare-associated. The rates of methicillin resistance among the S. aureus isolates recovered did not vary during the study period and were similar among the 3 hospitals. However, the percentages of cases of healthcare-associated MRSA bloodstream infection due to USA300 strains varied substantially among the 3 hospitals: 62%, 19%, and 36% (P < .001) for community-onset cases and 33%, 3%, and 33% (P = .005) for hospital-onset cases, in hospitals A, B, and C, respectively. In addition, the number of cases of healthcare-associated MRSA bloodstream infection caused by USA300 strains increased during the study period at 2 of the 3 hospitals. At each hospital, USA300 strains were most common among cases of community-associated infection and were least common among cases of hospital-onset infection. Admission to hospital A (a safety-net hospital), injection drug use, and human immunodeficiency virus infection were independent risk factors for healthcare-associated MRSA bloodstream infection due to USA300 strains.
Conclusions.
The prevalence of USA300 strains among cases of healthcare-associated MRSA bloodstream infection varied dramatically among geographically clustered hospitals. USA300 strains are replacing traditional healthcare-related strains of MRSA in some healthcare settings. Our data suggest that the prevalence of USA300 strains in the community is the dominant factor affecting the prevalence of this strain type in the healthcare setting.
By
Bruce D. McCollister, Department of Microbiology, University of Colorado Health Sciences Center, B175, Room 4615, 4200 E. 9th Ave., Denver, CO 80262, USA,
Andres Vazquez-Torres, Department of Microbiology, University of Colorado Health Sciences Center, B175, Room 4615, 4200 E. 9th Ave., Denver, CO 80262, USA
Mononuclear phagocytes associate with S. enterica early in the disease process before acute inflammatory abscesses are formed, as well as during later stages of the acquired immune response in which macrophages form part of well-organized granulomas (Mastroeni et al., 1995; Richter- Dahlfors et al., 1997). The ability to survive within macrophages is a key event in the pathogenesis of Salmonella enterica (Fields et al., 1986). A growing body of information indicates that macrophages can serve as sites for S. enterica replication, even though they can be activated to exert potent anti- S. enterica activity. The great majority of the intimate interactions between S. enterica and macrophages take place inside a specialized endocytic vacuole named the phagosome. This chapter discusses the dynamic S. enterica phagosome as it pertains to the pathogenesis of this intracellular Gram-negative bacterium.
Immunological and genetic manipulations in animal models of infection, as well as the observation of naturally occurring genetic traits, have revealed that genetic loci encoding Nramp1, TLR4, NADPH oxidase and IFNγ play key roles in resistance to S. enterica infection. These host defenses are expressed directly by macrophages or, as in the case of IFNγ, up-regulate the anti-S. enterica activity of mononuclear phagocytes. In the following sections, we will discuss both the mechanisms by which these host defenses contribute to the anti-S. enterica activity of macrophages, and the virulence factors used by S. enterica to avoid these components of the antimicrobial arsenal of professional phagocytes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.