We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We examine the Holocene loess record in the Heye Catchment on the margins of the Tibetan Plateau (TP) and China Loess Plateau (CLP) to determine: the region to which the Heye Catchment climate is more similar; temporal change in wind strength; and modification of the loess record by mass wasting and human activity. Luminescence and radiocarbon dating demonstrate loess deposited in two periods: >11–8.6 ka and <5.1 ka. The 8.6–5.1 ka depositional hiatus, which coincides with the Mid-Holocene Climatic Optimum, is more similar to the loess deposition cessation in the TP than to the loess deposition deceleration in the CLP. Grain-size analysis suggests the Heye loess is a mixture of at least three different grain-size distributions and that it may derive from multiple sources. A greater proportion of coarse sediments in the older loess may indicate stronger winds compared with the more recent depositional period. Gravel incorporated into younger loess most likely comes from bedrock exposed in slump scarps. Human occupation of the catchment, for which the earliest evidence is 3.4 ka, postdates the onset of slumping; thus the slumps may have created a livable environment for humans.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.