We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We examined the association of social activity with cognitive decline in 1138 persons without dementia at baseline with a mean age of 79.6 (SD = 7.5) who were followed for up to 12 years (mean = 5.2; SD = 2.8). Using mixed models adjusted for age, sex, education, race, social network size, depression, chronic conditions, disability, neuroticism, extraversion, cognitive activity, and physical activity, more social activity was associated with less cognitive decline during average follow-up of 5.2 years (SD = 2.7). A one point increase in social activity score (range = 1–4.2; mean = 2.6; SD = 0.6) was associated with a 47% decrease in the rate of decline in global cognitive function (p < .001). The rate of global cognitive decline was reduced by an average of 70% in persons who were frequently socially active (score = 3.33, 90th percentile) compared to persons who were infrequently socially active (score = 1.83, 10th percentile). This association was similar across five domains of cognitive function. Sensitivity analyses revealed that individuals with the lowest levels of cognition or with mild cognitive impairment at baseline did not drive this relationship. These results confirm that more socially active older adults experience less cognitive decline in old age. (JINS, 2011, 17, 998–1005)
Nanophosphors correspond to nanostructured inorganic insulator materials that emit light under particle or electromagnetic radiation excitation. In this work we investigate the structure and luminescent properties of Ce-doped Lu2SiO5 (LSO) nanophosphors prepared by solution combustion synthesis with the Ce content 0.1 to 12 at. %. Samples were characterized by transmission electron microscopy (TEM), line scan electron energy-loss spectroscopy (EELS), x-ray diffraction (XRD), and electron paramagnetic resonance (EPR) spectroscopy. Photoluminescence excitation and emission spectra are composed of two major bands centered at 360 and 430 nm, respectively. These results reveal a red-shift and enhanced Stokes shift for the nanophosphors when compared to bulk. Ce content was also found to affect photoluminescence emission intensity and fluorescent lifetime. The nanophosphor concentration quenching curve presents a broad maximum centered at 1 at.%. Lifetime measurements show a continuous decrease from 34 to 21 ns as Ce content is increased.
In this work we explore the uniqueness of solution combustion synthesis (SCS) technique to produce luminescent nanostructured materials with metastable phases. We synthesized Gd2O3:Eu with the high-temperature phase and induced phase transformation toward the room temperature phase to investigate the effects of structural transformation on the luminescent properties. SCS is based on exothermic redox reactions that undergo self-sustaining combustion, yielding powders composed of agglomerates of nanocrystals with typical dimensions of tens of nanometers. Synthesis of materials through SCS occurs in conditions far from thermodynamic equilibrium and, due to the high temperatures achieved during combustion, metastable crystallographic phases can be formed. Eu-doped Gd2O3 was obtained with base-centered monoclinic structure and average nanocrystal size of 35 nm as determined by Debye-Scherre analysis. Phase transformation to the cubic structure was induced by isothermal annealing at 1000 oC for up to 152 hrs and followed by x-ray diffraction (XRD). Luminescence excitation and emission spectra were obtained as a function of annealing time. The transformation from monoclinic to cubic structure was followed by the behavior of the (111) monoclinic/(222) cubic intensity ratio. The ratio value for the as-prepared material is 6, decreasing fast to 3 after 5 hrs. annealing, and reaching a value of 0.1 after 152 hrs. Concomitant to the structural transformation, nanocrystal size was followed for both crystalline phases. The average nanocrystal size for the cubic phase increases from 27 to 47 nm from 1 to 152 hrs., respectively. On the other hand, nanocrystals with the monoclinic phase remained with a constant size around 38 nm. Overall, variation in size is small due to the low connectivity among nanocrystals resulting from the low isostatic pressure employed to prepare the pellets, together with the non-uniform shape of the agglomerates. Photoluminescence excitation spectra are dominated by a broad centered near 278 nm and assigned to the O2-Eu3+ charge transfer band. Photoluminescence emission results present the 5D0-7FJ (with J = 0-4) transitions of Eu3+ ions. The behavior of these bands was investigated as a function of annealing time and subsequently related to the structural changes.
Email your librarian or administrator to recommend adding this to your organisation's collection.